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Abstract

In this thesis, we present a theoretical study of biorthogonal Coifman wavelet sys-
tems, a family of biorthogonal wavelet systems with vanishing moments equally dis-
tributed between scaling functions and wavelet functions. One key property of these
wavelet systems is that they provide nice wavelet sampling approximation with ex-
ponential decay. Moreover they are compactly supported, symmetric, have growing
smoothness with large degrees, and converge to the sinc wavelet system. Using a
time domain design method, the exact formulas of the coefficients of biorthogonal
Coifman wavelet systems of all degrees are obtained. An attractive feature behind it
is that all the coefficients are dyadic rational, which means that we can implement a
very fast multiplication-free discrete wavelet transform, which consists of only addi-
tion and shift operations, on digital computers. The transform coding performance
of biorthogonal Coifman wavelet systems is quite comparable to other widely used
wavelet systems. The orthogonal counterparts, orthogonal Coifman wavelet systems,
are also discussed in this thesis.

In addition we develop a new wavelet-based embedded image coding algorithm,
the Wavelet-Difference-Reduction algorithm. Unlike zerotree type schemes which use
spatial orientation tree structures to implicitly locate the significant wavelet trans-
form coefficients, this new algorithm is a direct approach to find the positions of
significant coefficients. It combines the discrete wavelet transform, differential cod-
ing, binary reduction, ordered bit plane transmission, and adaptive arithmetic coding.
The encoding can be stopped at any point, which allows a target rate or distortion
metric to be met exactly; the decoder can also terminate the decoding at any point,
and produce a corresponding reconstruction image. Our algorithm provides a fully
embedded code to successively approximate the original image source; thus it’s well

suited for progressive image transmission. It is very simple in its form (which will
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make the encoding and decoding very fast), and has a clear geometric structure, which
enables us to process the image data in the compressed wavelet domain. The image
coding results of it are quite competitive with almost all previous reported image

compression algorithms on standard test images.
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Chapter 1

Introduction

The theory of wavelet analysis has grown explosively in the last decade. The termi-
nology “wavelet” was first introduced, in the context of a mathematical transform,
in 1984 by A. Grossmann and J. Morlet [19]. In 1988, I. Daubechies, in her cele-
brated paper [8], introduced a class of compactly supported orthogonal wavelet sys-
tems in general, as well as a family with growing smoothness for large support, the
Daubechies wavelet systems. In 1989, S. Mallat [32] presented the theory of mul-
tiresolution analysis and the Mallat algorithm. The spline family was introduced and
studied by G. Battle [2], P. G. Lemarié [30], and C. K. Chui [4]. The necessary and
sufficient conditions for an orthogonal wavelet system were given by A. Cohen [6] and
W. Lawton [29]. Except for the Haar wavelet system, orthogonal wavelet systems
can’t be symmetric, though symmetry is highly desired, for example, in the applica-
tions in signal processing, where symmetry corresponds to linear phase. To obtain
symmetry and keep the property of perfect reconstruction, A. Cohen, I. Daubechies,
and J.-C. Feauveau [7] replaced the orthogonality condition with biorthogonality and
thus established the theory of biorthogonal wavelet systems. At the same time, lots
of pioneer work has been done by many scientists from mathematics, physics and
engineering. For more details of wavelet theory, we refer to [5], [9], [35] and [39].

Along with the rapid development of its theoretical aspects, wavelet analysis im-
mediately found its application in mathematical modeling, neural networks, numerical
analysis, and signal processing. Meanwhile, it is still keeping spreading its influence
in other untouched areas. Since Fourier analysis has played a big role in science, it
will not be a surprise that wavelet analysis will be on the stage of scientific research
and applications for a long time, and will give us a better understanding of the world
we are living.

In this thesis, we will focus on biorthogonal Coifman wavelet systems, a tamily of
biorthogonal wavelet systems with very nice properties both in the theoretical sense
and application sense. The original idea goes back to R. Coifman of Yale University.

In the spring of 1989, he suggested that it might be worthwhile to construct orthogo-



nal wavelet systems with vanishing moments not only for the wavelet functions (which
is the hypothesis posed on the Daubechies wavelet systems), but also for the scaling
functions. This turned out to be a big success. One key property of these orthogonal
wavelet systems with vanishing moments equally distributed between scaling func-
tions and wavelet functions (which are called orthogonal Coifman wavelet systems)
is that they have very nice approximation properties with exponential decay. This
result was proved by us in 1993 and it is a natural extension of the result of R. O.
Wells, Jr. and X. Zhou [56]. In 1994, we introduced biorthogonal Coifman wavelet
systems, the biorthogonal counterparts of orthogonal Coifman wavelet systems. These
biorthogonal Coifman wavelet systems also have fast approximation properties with
exponential decay. Moreover they are symmetric, compactly supported, have growing
smoothness, and converge to the sinc wavelet system. Another attractive feature of
biorthogonal Coifman wavelet systems is that all the scaling vectors are dyadic ratio-
nal, which means we can implement a multiplication-free discrete wavelet transform.
In 1995, D. Wei et al. [55] did the coding performance evaluation of biorthogonal
Coifman wavelet systems. It turns out that biorthogonal Coifman wavelet systems
are very useful for image transform coding and seem to be quite comparable to the
wavelet systems used in the state-of-the-art compression systems.

Perhaps the biggest success of wavelet applications has been claimed in signal
processing, in particular, image coding. With good localization properties in both
the spatial domain and the frequency domain, the wavelet transform can handle non-
stationary signals pretty well. Current research on wavelet based image coding [1],
[12], [31], [45], and [52], etc, has shown the high promise of this relatively new yet
almost mature technology.

In the second part of the thesis, we propose a new image coding method. Unlike
zerotree type schemes, such as J. Shapiro’s embedded zerotree wavelet algorithm [45],
and A. Said and W. A. Pearlman’s codetree algorithm [43], all use spatial orientation
tree structures to implicitly locate the significant wavelet transform coefficients, this
new algorithm is a direct approach to find the positions of significant coefficients. It
combines the discrete wavelet transform, differential coding, binary reduction, ordered
bit plane transmission, and adaptive arithmetic coding. The encoding can be stopped
at any point, which allows a target rate or distortion metric to be met exactly. The bits
in the bit stream are generated in the order of importance, yielding a fully embedded
code to successively approximate the original image source; thus it’s well suited for

progressive image transmission. The decoder can also terminate the decoding at any



point, and produce a lower (bit) rate reconstruction image. Our algorithm is very
simple in its form (which will make the encoding and decoding very fast), requires no
training of any kind or prior knowledge of image sources, and has a clear geometric
structure which enables us to process the image data in the compressed wavelet
domain. The image coding results are quite competitive with almost all previous
reported image compression algorithms (including [45] and [43]) on standard test
images.

This thesis is organized as follows. In Chapter 2 we gives an overview of the
general theory of wavelet analysis. This provides the underneath background where
biorthogonal Coifman wavelet systems reside in and also it is an attempt to make
the thesis self-contained. Chapter 3 studies biorthogonal Coifman wavelet systems.
The definition, construction, and properties will be be discussed in this chapter. The
existence and construction of orthogonal Coifman wavelet systems will be studied
in Chapter 4. The image coding algorithm, the Wavelet-Difference-Reduction algo-
rithm, is presented in Chapter 5. We will compare its coding performance with other
algorithms and evaluate it in various applications. We conclude the thesis in Chapter
6.

Some of the work in the thesis was announced and developed in [48], [38], [55],
[50], and [49].



Chapter 2

General Theory of Wavelet Analysis

The first orthogonal wavelet system, the Haar wavelet system, was constructed by
A. Haar [21] in 1910. The Haar wavelet system consists of piecewise constant functions
and provides an orthonormal bases of L*(R). Seventy years later, A. Grossmann and
J. Morlet introduced the notion “wavelet transform” [19] in 1984. A big breakthrough
of wavelet analysis was brought by I. Daubechies in 1988. In her classical paper [3],
she introduced a class of compactly supported orthogonal wavelet systems in gen-
eral, as wells as a family with growing smoothness for large support, the Daubechies
wavelet systems. Her work immediately stimulated a rapid development in the theory
and applications of wavelet analysis. In 1989, S. Mallat presented the theory of mul-
tiresolution analysis [32]. With the multiresolution analysis, we can now construct
the wavelet system with desired property. The discrete wavelet transform can be com-
puted by the Mallat algorithm [32]. Usually the wavelet system constitutes a frame
of L*(R). To obtain an orthogonal system, it has to satisfy the orthogonality condi-
tions given by A. Cohen [6] and W. Lawton [29]. Later A. Cohen, I. Daubechies, and
J.-C. Feauveau [7] established the theory of biorthogonal wavelet systems. The main
advantage of biorthogonal wavelet systems over orthogonal ones is that biorthogonal
systems can be symmetric, while orthogonal systems can’t except the Haar system.
On the other hand, orthogonal systems preserve the L? norm, biorthogonal systems
don’t. So there are tradeoffs between using biorthogonal systems and using orthogonal
systems, depending on the specific applications.

In the chapter, we will go through some basic theory of wavelet analysis. For more

details we refer to the original papers and [5], [9], [35], and [39].

2.1 The Advent of the Wavelet Transform

The wavelet transform was first introduced by A. Grossmann and J. Morlet [19] in
1984. 1t is a tool that cuts up data, functions or operators into different frequency

components, and then studies each component with a resolution matched to its scale.



Similar to the Fourier transform, there are continuous wavelet transform (CWT) and
discrete wavelet transform (DWT).

Definition 2.1 The continuous wavelet transform (CWT) of a function
f(z) € L*(R) with respect to ¢(z) € L*(R) is

CWT(f)(ab) = [al" [ f@)ilale - b)) de,

— 00

where a,b € R,a # 0.

Definition 2.2 The discrete wavelet transform (DWT) of a function
f(z) € L*(R) with respect to ¢(z) € L*(R) is

DWT(f)(j. k) = |ao/? /OO Fla)d(ag'c — kbo) de,

— 00

where ag, by € R,a0 # 0,5,k € Z.

For the discrete wavelet transform, ag and by are usually set to be 2 and 1. In
such a case, the DWT becomes

o0

DWT(f)(j k) = 2 [~ fa)d (e — k) da.

— 00

2.2 Orthogonal Wavelet Systems
The Haar wavelet function is a piecewise constant function (see Figure 2.1)
, 0<x < % ,

pHwr () = {0 —1, <<,

0, otherwise.

The family of functions %", (),

’ 27 = 20
k+1/2 k41
— <z < 57 )

77Z)]’qul?“]"k(x) — 2j/2¢Haar(2jx_k) — 1

0, otherwise,

generated from /%" (z) by the operation of dilations and translations, constitute an

orthonormal basis of L*(R), where the expansion coefficients are exactly the discrete
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Figure 2.1 The Haar Wavelet Function

wavelet transform with respect to 17" (z). A critical insight is to look at another

piecewise constan function, the so-called Haar scaling function (see Figure 2.2)

1, 0<z<1,

Haar _
¢ (@) = { 0, otherwise.

The linear subspaces V; spanned by {qu“‘”j’k, k € Z}, where

1

0, otherwise,

k k+1
2—J§$<—

’ 27

¢Haarj7k(x) — 2]/2¢Haa7(2jx_k) — {

are a sequence of nested subspaces of L*(R),
-CVyaCcVacWwaeWwcaVy-,

and their union is a dense subset of L*(R),

If W; are the linear subspace spanned by {;/)H““TM, k € Z}, the fact is that W is the
orthogonal complement of V; in V,4;. Thus it follows that

Lz(R) = ‘/jo b Wjo @Wjo-l-l D W]o-l-? D,
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Figure 2.2 The Haar Scaling Function
where jo is some integer. So the collection of functions {¢H““Tjo7k,k € Z} and
{;/)H““TM, keZ}l,jeZ,j> jo,is also an orthonormal basis of L?(R), and the ex-

pansion coefficients are exactly the discrete wavelet transform with respect to ¢

and ¢Haar‘

The Haar wavelet system explained above illustrates the core idea of the multires-

olution analysis, which is the starting point of the wavelet analysis.

2.2.1 The Multiresolution Analysis

In this subsection we will state the main results of the multiresolution analysis. For
all the proofs and more details, we refer to [34], [32], and [24].
A multiresolution analysis consists of a sequence of nested closed subspaces V; C
L*(R), j € Z,
C Vo CcVacWw oW Ve,

such that



and

NV = {0}

N/

There must exists a L* function ¢(x) € V; so that
{dor(x), k € Z} is an orthonormal basis in Vg,

where ¢; () = 2//2¢(27x — k). The last requirement for a multiresolution analysis is
that
fO)eVe <= f(2) eV

In a multiresolution analysis, since
¢(z) € Vo C Wi,

and {¢1,(x),n € Z} is an orthonormal basis in Vi, there exists {ay, k € Z} such that

¢(x) = Y arg(2x — k).

keZ

Define a function ¢(x)

bla) = Y (=Drasi(2e — ),

keZ
and assume W; is the orthogonal complement of V; in V44, then the funndamental

result is that
{;k(2), k € Z} is an orthonormal basis in W, ,
where t; () = 2//%)(2'2 — k). Thus the family {¢;r(x),j,k € Z} constitute an
orthonormal basis of L?(R), and the expansion coefficients are exactly the discret
wavelet transform with respect to ¢ (x).
We call ¢(x), ¥(x), and {ax} the scaling function, the wavelet function, and the

scaling vector, respectively. Sometimes we will also use the following two vectors

{hi, k € Z} and {gx, k € Z},
hk = 2_1/2%, gr = (—1)k2_1/2a_k+1 .
With these two vectors, we have

o(x) = > hpoi (),

keZ



and

(x) = Z rtr ().

keZ
We call {hy, k € Z}, {gx, k € Z} the scaling vector and the wavelet vector, respectively.
Note that the difference between {ay,k € Z} and {hy, k € Z} is that they have

different normalization.

2.2.2 Daubechies’ Work

[. Daubechies [8] constructed a class of compactly supported orthogonal wavelet sys-
tems in general, as well as a family with growing smoothness for large support, the
Daubechies wavelet system. In this subsection, we will review in brief her method to
construct orthongonal bases of compactly supported wavelets. For more details, we
refer to [8] and [9].

Let’s start with the scaling vector {ay, k € Z}. As we know, the scaling function

o(x) satisfies the 2-scale difference equation

ole) = D and(2x — k).

keZ

Taking the Fourier transform, we have

A~

(€)= mol&/2)6(£/2), (2.1)

where

mo(§) = % Z ape "

keZ
Studying on the equation (2.1), Daubechies found that in order to obtain an

orthonormal wavelet system, the {a;} must satisfy the linear condition

> ap = 2. (2.2)
keZ
and the quardratic condition

2, 1=0,
D apapn = 2601 = { (2.3)

LeZ 0, otherwise.

Yet these two equations (2.2) and (2.3) are not sufficient to imply an orthonormal

wavelet system.
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At the same time, we are mainly interested in the case when the scaling vector
{ar} has finite length, i.e., there exists a positive number K, such that a;, = 0, when
|k| > K, because it garantees the existence of the scaling function ¢(x) due to the

lemma by Deslauriers and Dubuc [11].

Lemma 2.1 If m({) = ZiviNl are”*¢ with EiviNl ar = 1, then the
infinite product [];Z, m(277¢) is an entire function of exponential type.

In particular, it is the Fourier transform of a distribution with support in

[Ny, Na.

With the above conditions on {a;}, W. Lawton [28] prove that ¢ (x) will generate

a fight frame. We combine all these result as the following single theorem.

Theorem 2.1 Let {ay, k € Z} be a sequence having finite length, a; = 0
when |k| > K for some number K. Assume {a;} satisfy

Zak = 2,

keZ

> aparia = 260;.
keZ

Define |
mo(€) = 53 ape™™,

2 keZ
then the infinite product []5Z, mo(277€) is the Fourier transform of an L?

function with compact support, i.e., set
0 = @n 7 Thmf270).
-
then ¢(x) € L*(R) and ¢(z) has compact support. In addition, define
bla) = (D20 — ),
keZ

then ¢ (x) is also compactly supported and its dilations and translations
constitute a tight frame for L?(R), i.e., for all f(z) € L*(R),

Sol< ftie > P = IfI17,

5,keR

where t; (x) = 2//%)(2/2 — k). Thus the L? norm of f(z) is preserved in

the discrete wavelet transform with respect to ¢ (x).
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2.2.3 Orthonormality

As we have seen, the linear condition (2.2) and the quardratic condition (2.3) are
not sufficient to produce an orthogonal system. It can be shown that the wavelet
function ¢ () in Theorem 2.1 provides an orthogonal system, i.e., 1;; constitute an
orthonormal basis of L?(R), if and only if

/Oo o(x)p(x — k)de = o, VEEZ.

The first necessary and sufficient condition for the above equation was identified by
A. Cohen [6]. He introduced the concept “congruent set” and used this concept to

give an equivalent condition of orthogonality.

Definition 2.3 A compact set K is called congruent to [—n, 7] modulo
2w if

1. The Lebesgue measure |K| = 27;
2. For all £ € [—7, 7], there exists | € Z so that ¢ 4+ 2i7 € K.

We are now ready to state Cohen’s theorem.

Theorem 2.2 Assume all the conditions of Theorem 2.1. Then the

following three conditions are equivalent:

1.
/Oo o(z)p(x — k)de = bop, VEkEZ.

2. There exists a compact set K coongruent to [—7, 7] modulo 27 and

containing a neighborhood of 0 so that
infk>0 infgej( |m0(2_k€)| > 0 .

3. There is no non-trivial cycle {&,---,&,} for the operation & +— 2¢
mod (27) such that |mo(&;)| =1 forall j=1,---,n.

The following corollary is quite uesful in practice.

Corollary 2.1 Assume all the conditions of Theorem 2.1. If mg has no
zeros in [—n /3,7 /3], then

/Oo o(x)p(x — k)de = o, VEEZ.

— 00
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Another equivalent condition of orthogonality was given by W. Lawton [29]. It is

a very simple criterion based on the multiresolution matrix.

Theorem 2.3 Assume all the conditions of Theorem 2.1. Define a mul-

tiresolution mutrix 1" by
1
iy = = Z Apln_204f -
25

It T has 1 as a nondegenerate eigenvalue, then

/Oo o(x)p(x — k)de = o, VEEZ.

— 00

Note that since only finite a;, are nonzero, the multiresolution matrix 7" has only
finite nonzero entries. Thus we can check only a small submatrix, which contains all
the nonzero entries of T'.

Combining Theorem 2.1 and Theorem 2.3, we can construct an orthogonal wavelet

system from the scaling vector {ay, k € Z}.

Theorem 2.4 Let {ay, k € Z} be a sequence having finite length, a; = 0
when |k| > K for some number K. Assume {a;} satisfy

Zak = 27

keZ

> aparia = 260;.
keZ
Define |
mo(€) = =Y are™ ",

2 keZ

3e) = @r) T mo(277¢).

7=1
%/)(51/') = Z(_l)ka—k+1¢(2$ - k)
keZ
If the multiresolution matrix T

b = =3 Qplp_zitk -
k

DN | —

has 1 as a nondegenerate eigenvalue, then the ¢;.(z) = 29/2¢(2x — k)
define a multiresolution analysis, and the 1, () = 29/%(272 — k) are the
associated orthonormal wavelet basis, where the expansion coefficients are

exactly the discrete wavelet transform with respect to ¢ (x).
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2.2.4 Smoothness

T. Eirola [14] developed a method to calcute the Sobolev smoonthness of wavelet

systems. The equation he worked on is actually the two-scale difference equation
= Zak¢(2x - k) ’
e

no matter how the ¢(x) will be the scaling function of a wavelet system or not. Thus
his result is quite general, no restricted to the wavelet analysis.

The main idea is to estimate the multiresolution operator. For more details, we
refer to [14] and [22].

2.3 The Mallat Algorithm

The Mallat algorithm [32] tells us the relation between the discrete wavelet transform

of different scales. Assume that

Citlhe = / 20+ /2¢(2j+1$ — k) dx,
cu = [ f@ o~ k) de,
dip = /_Oo F)212(20 0 — k) de .

Then we have
cir = /OO f(:z;)Zj/qu(ij — k) dx

= /:: f(:Jz;)Qj/2 (Z and(2 e — 2k — n)) dx

neZ

= Zan/ 2]/2 2]+1:1;—2k—n)d:1;

neZ -

—1 2

= Z 2 Ci41,2k+n

neZ
= Z hncj—l—l,Qk—I—n

neZ

— Z hn—?kcj—l—l,n

neZ
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Similarly
dp = /°° F(@)272) (2 — k) da

= /_O:o fx)2//? (Z(—l)”a_n+1q§(2j+lx — 2k — n)) dx

neZ

= > (- a1 /:: f(:z;)Qj/Qqﬁ(QHlx — 2k —n)dx

neZ

= Z (—1)"a—pq1 2_1/20j+1,2k+n
nEZ

= Z InCj+1,2k+n
ne’Z

= Z GIn—2kCj+1,n
neZ
Thus we can compute the discrete wavelet transform coefficients at level j from
the discrete wavelet transform coefficients at level j 4+ 1 throught the following Mallat
algorithm,
Gk = D huookCipin,

nEZ
and

d] k = Z In—2kCj41,n -

ne’Z
It can be shown that in an orthogonal wavelet system, the following reconstruction

formula holds,

Cit1k — Z (h2k—ncj,n + g?k—nd]}n) :

neZ

2.4 Biorthogonal Wavelet Systems

In a biorthogonal wavelet system, the decomposition function and the reconstruction

function can be different. Thus we will have an expansion which looks like

J

fl) = Hm 7 5" < fibjn > b

J—o0

j=J k

In 1992, A. Cohen, I. Daubechies, and J.-C. Feauveau [7] established the theory

of birothogonal wavelet systems. Basically we have two scaling vectors, the analysis
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scaling vector {ag, k € Z} and the synthesis scaling vector {ay, k € Z}. They satisfy

the linear conditions

dar = 2, (2.4)

keZ
Z ap = 2, (2.5)
keZ
and the bilinear condition
Z akdk+2[ = 250717 \V/l € Z . (26)

keZ

With {ar}, {ar} satisfying (2.4), (2.5), and (2.6), assume both {a;} and {a}
have finite length, we can define two compactly supported functions ¢(x) and qz(:zj)

by their Fourier transform,

3E) = (2m) 2 T mo(2796).

i=1

5e) = (2r) 2 T o(2776)

j=1
where

mo(§) = %Z are™ ",

keZ
. 1 L
mo(€) = 5 Zake ke
keZ
We also define two compactly supported functions ¢ (x) and ;/N)(:L') by
P(a) = D (=D a 62 — k),

keZ
Plx) = Z(—l)ka_quNﬁ(Qx — k).
keZ
For {ax} and {ay} satisfying (2.4), (2.5), (2.6) and having finite length, the ;
and ;/N)M constitute a weak dual frame of L*(R), i.e., for any f(z),g(z) € L*(R),

J
}I_{(I)lo Z Z < quvbj,k >< ¢j,k7.g > =< fv.g >,
j=—J k
or, in a weak sense,
J ~
f@) = limyme Y > < fotbin > ik, (2.7)

j=—J k
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where v 1(x) = 20/%)p(2 0 — k),;/;]k(x) = 2]‘/2&(2]‘1, — k). And we call ¢(a), ¥(z),
q;(:zj), ;/N)(:L') the analysis scaling function, the analysis wavelet function, the synthesis
scaling function and the synthesis wavelet function, respectively.

If
GO < CO+ENT, |o(6)] < (1 +J¢])

for some constant C', then the limit in (2.7) converges strongly in LZ(R).

In a biorthogonal system, we can’t get the orthogonality, but we can impose some
conditions to establish a dual Riesz bases. The sufficient and necessary condition of
a dual Riesz bases for the scaling vectors {ay} and {az} satisfying (2.4), (2.5), (2.6)

and having finite length is similar to the orthogonal cases, which states

/°° 2)d(z — k) de = box, VEEZ.
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Chapter 3

Biorthogonal Coifman Wavelet Systems

Based on the general theory of wavelet analysis, we will present the mathematical
theory of biorthogonal Coifman wavelet systems in this chapter. It all begins with a
wavelet approximation theorem, which is valid for both biorthogonal and orthogonal
Coiftman wavelet systems. The definition of biorthogonal Coifman wavelet systems
follows right after it and the problem of existence is considered next. Here we intro-
duce a time domain design method which is very straight forward. Thus the existence
of biorthogonal Coifman wavelet systems is proved by direct construction for all de-
grees. Beside the approximation property, biorthogonal Coifman wavelet systems are
symmetric, have compact support and growing smoothness with large degrees, and
converge to the sinc wavelet system. An attractive feature of biorthgonal Coifman
wavelet systems is that all the scaling vectors are dyadic rational, which means we
can have a very fast multiplication-free discrete wavelet transform implemented on

digital computers.

3.1 A Wavelet Approximation Theorem

The Mallat Algorithm tells us how to compute the discrete wavelet transform co-
efficients from one level to the next finer level. Namely, if {¢;114, &k € Z} are the
coefficients at the (5 + 1)-th level, {¢;x, k € Z} and {d;;, k € Z} are the coefficients
at the j-th level,

Cit1h = /_OO f(x)2(1+1)/2¢(2]+1x . k) dl’,

i = [ F@2 e~ k) de.
di = [ J@p@e - k) de

then

Cik = Zhn—chj—I—l,na
n
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dj,k — Zgn—chj—I—l,na
n

where {h,} and {g, } are the scaling vector and the wavelet vector, respectively. And
we can further decompose {c¢;r, k € Z} into {¢j_1 4,k € Z} and {d;_1 4,k € Z},
decompose {¢;_1 4,k € Z} into {¢j_op, k € Z} and {dj_5 1,k € Z}, and so on. This
leaves one problem, that is, how to get the coefficients at the starting level, which are
those {¢j414,k € Z} in the above decomposition. Without knowing the coefficients
at the starting level, there is no meaning to talk about the Mallat Algorithm. Thanks
to the following theorem, proved by R. O. Wells, Jr. and X. Zhou [56] in 1991, we
know how to solve this problem easily. This theorem is stated in R? for simplicity,

but it is true in R™ as well. The proof can be found in [56].

Theorem 3.1 Assume ¢(x) to be the scaling function of an orthonormal
wavelet system with a finite length scaling vector {ay, k € Z}, a;, = 0 when

|k| > K for some positive integer K,

o(x) = > ard(2x — k). (3.1)
keZ
We define a constant ¢ by

1
c = — Z kay, . (3.2)
2 keZ

Assume the function f(z,y) € C* (Q), where () is a bounded open set in
R2. Let, for j € N,

(k—l—c [+ ¢

) = 3 3 1[G oo, e,

kl)EA

where the index set A = {(k,l) € Z* : (supp(;x(x)) x supp(¢;,(y))) N
Q£ 0}, and ¢;(x) = 2//2¢(27x — 7). Then

1 F(e,y) = ST y)llrz) < C(1/27)%,
and if é(z) € CY(R),
1 (2, y) = ST () y)l ey < CF27,

where (' is a constant depending only on K, the diameter of {2, and the

maximum modulus of the first and second order derivatives of f(x,y) on

Q.
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Theorem 3.1 provides a second order wavelet approximation result for L? func-
tions. Sample values of a sufficient smooth (more precisely, C'?) function can be used
as the wavelet transform coefficients and the corresponding wavelet approximation
function S7(f) converges in Sobolev norms of first order to the original function.
So in practice, we can take the sample values as the discrete wavelet transform co-
efficients at the starting level and apply the Mallat Algorithm on them. Also from
Theorem 3.1, we know that the finer the starting level is, the closer the approximation

is. Thus we will always take sample values at the finest level whenever possible.

k4c
27

stant ¢ from the dyadic rational 2% Let’s have a close look at the constant c. It is

In Theorem 3.1, sample values are taken on the points ( ), a translate of con-

defined in (3.2) and actually it is closely related to the zero moment and the first

moment of the scaling function ¢(x).

Lemma 3.1 Assume ¢ to be a constant as defined in (3.2), where {ay} is
a finite length sequence satisfying the two-scale difference equation (3.1)

and

Zak:2

keZ
Then

c/oo dlx)dx = /OO ro(x)de. (3.3)
Proof Using (3.1), we have
/OO ro(x)de = /:: x (Z apd(2x — k)) dx
= Zak/ é(2x — k) dx
_ —Zak/_ (¢ + k)é(z) de
= izk: /_Oo qﬁ(:z;)d:z;—l—izk:kak/ooqﬁ(x)dx
1
2

— 00

/ zo(x)de + %c/_o:o o(x) dx

Thus,
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The integrals on the left hand side and the right hand side of (3.3) are the zero
moment and the first moment of ¢(x), respectively. It follows from Lemma 3.1 that
if the first moment of ¢(x) equals zero, and the zero moment is not equal to zero,
then ¢ must be zero. In a wavelet system, the zero moment of the scaling function is
always one. In this case, ¢ is exactly the first moment of ¢(x). When the first moment
is zero, we may sample on dyadic rationals to get a good approximation. It turns
out the moment values of ¢(x) plays an important role in the wavelet approximation,
not just the first moment. The wavelet approximation theorem tells us how we
can impose more vanishing moments on the scaling function ¢(x) to produce better

approximation result.

Theorem 3.2 (Wavelet Approximation Theorem) Suppose ¢(x) is an
L*(R) solution of the two-scale difference equation (3.1), where {a;} is a
finite length sequence satisfying the vanishing moment conditions up to

degree N, i.e.,

Z (2k) aqz, = Z (2k + 1)Paggsr = 0, forp=1,---,N, (3.4)
keZ keZ

Zagk = Zazk“ =1. (35)

keZ keZ
For a function f (z) € C{™ (R), define

S x) = 2792 E ik (Z) 3.6
() (2) %f(%)qﬁ,() (3.6)

where ¢;x(z) = 2//2¢(2/2 — k). Then
1/ (@) = S9(f) (@) |lpe < C27/VFD, (3.7)
where C' depends only on f and the sequence {a;}.

The conditions (3.4) and (3.5) are equivalent to the vanishing moments of the
scaling function ¢(x) and the wavelet function ¢ (), as we will see in Section 3.2. From
(3.7) it follows that with more vanishing moments on ¢(x) and ¢ (x), the convergence
rate will be improved with an exponential decay.

The proof of Theorem 3.2 is based on the following lemma.



21

Lemma 3.2 Assume {a;} and ¢(x) satisfy the same conditions as in
Theorem 3.2, then

1 ifp=0
—k)Yo(z—k) = bop = , =0,---,N. (3.8
Tl krola—h) = b, {0 oy or p (3.3

Lemma 3.2 will be proved in Section 3.2. The equality (3.8) holds in L?, thus, it
is true for almost all @ € R, but not for every @ € R. If ¢(x) is continuous, then
(3.8) is valid for every = € R.

Based on Lemma 3.2, we are now ready to prove the wavelet approximation the-
orem.

Proof of Theorem 3.2 Using the Taylor expansion of f at the point z,

(8)- £l

for some 6 on the line segment connecting x and 2%
From Lemma 3.2, for 1 < p < N,

Z(%—x)p@,k( = 2270 3 (k= 272) 6 (22— k) = 0,

keZ keZ

and
S b)) = 2073 6 (20— k) = 272
keZ keZ

Since both f(x) and ¢(x) have compact support, we can find a positive number A,
such that supp (f) C [-A, A], and supp (¢) C [—A, A]. Then

Z (%—x) f(p)(x)q$j7k(x) =0, forl<p<N,

Ikl<(2041) 4

Yoo f@)diu(x) = 27 (a),

k|<(29+1)A
SI(f) (2) = 2]/22f(2])¢]k<>=2-f/2 5 f( )mm.
keZ |k|<(254+1)A

Back to the Taylor expansion,

S](f)(x) — 9-i/2 Z ( — (]%f(p)

Ikl<(2/41)4 \ p=0

(7))
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+ % ™ (01, (% - fli)N) ¢jk(z)
0i/2 (Ni Y L (Zk_] - x)pqs],k (:1;))

ol
=0 |k|<(2+1)4 P

+27r % (%f(m (0) (% - 51?) ik (l‘))

[k1<(274+1)A
= f@)+277 37 (if““ (6:) (Lx)Nqs‘ <x>)
<z \ V! VA2 "
, 1 k N
CEE D> (—, (7000 = 1) (5 =) qu,k(x)) .
[k1<(274+1)A '
Thus,
j /2 1 N N k "
SN )= Fa) =277 3 | (FV0) - fP@) (2——) dik ()| -
[k1<(274+1)A
But
900 = )] < Clt-al < €l
for some constant (' depending only on f. So
1f (&) = S7(f) () [I2e
, c(k \"
< |7 —(—,—:1;) Pk (¥
|k|§(§+m NAZ o 1
9= i(N+3/2) (7 )
= (k= y)" oy = )| ||
: k|<(2741)A L2

where we make the substitution y = 27z. Define

Y

g () = (k=) oy — k)

then ¢ (y) has compact support [—A + k, A + k], and ||gx () ||z2 is equal to the L?
norm of ¥ +1¢(x), which is another constant C' depending only on ¢ (z). Using this

we obtain

1/ () = S/(f) () ]]22
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J(N+3/2) C Oo 1/2
< I (Y) 98, (y) | dy
°° k1| |k2|< 2741)A
J(N+3/2) C Oo 1/2
= > 9 (Y) g, (y) | dy
°° k1 |, [k2 | < (29 +1)A, |k —ka| <24
J(N+3/2) C o 1/2
= (2 2f+1 A-4A- (k%agz{‘/ Ihs (Y) 9k, (y) dy‘}))
N-|—3/2 C
_ 2 2
- B ) e
< (0277 N-l-l)7

where C' depends only on f(z) and ¢ (), i.e., C depends only on f and {a;}. [

We call S7(f)(z) defined in (3.6) the wavelet sampling approzimation of the func-
tion f(x) at the level j. It is similar to but distinct from the wavelet orthogonal
projection .

P = S ([ f@ ) dr) bl
keZ &0
which has been studied by various authors (see [3], [16], [17], [46], and others). The
wavelet sampling approximation is what is used in most applications of wavelets, as
it is the easiest approximation to compute. (Simply let the sample values of the given
function be the corresponding expansion coefficients.) The value of the above result is
that for biorthogonal and orthogonal Coifman wavelet systems (which will be defined
in Section 3.2 and 4), the degree of approximation is much better than that obtained
using Daubechies wavelet systems and the orthogonal projection.

As it can been seen in the proof, the smooth condition f(x) € Cév’l(R) is sufficient

for the above argument. We formulate the similar result for Holder space in the

following corollary.

Corollary 3.1 Assume {a;} and ¢(x) satisfy the same conditions as in
Theorem 3.2. If f(x) € Cév’a(R),O < a <1, then

< (9miN+a) 7

[£(z) = §7()(@)

12

where S7(f)(z) is the wavelet sampling approximation at the level j, and

C is a constant depending only on f and {ay}.
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For smooth functions, the L? norm estimate is not enough, sometimes. One of
the best candidates is the H™ norm. The H™ norm also measure the difference of
the (weak) derivatives. Since the wavelet sampling approximation S7(f) is a linear

combination of ¢, x, we require some regularity condition on the scaling function ¢(z).

Theorem 3.3 Assume the same conditions as in Theorem 3.2. If in

addition ¢(x) € C"(R), where n € Z,0 < n < N, then

[£(2) = S7(f)w)]| < 2701 (3.9)

Hn

where C' depends only on f and the sequence {a;}.

To get the H™ estimate of the difference between f(x) and S7(f)(x), we need a

variation of Lemma 3.2.

Lemma 3.3 Assume the same conditions as in Lemma 3.2, if in addition

é(x) € C™(R), where n is a nonnegative integer, then

> (e = k)P (@ —k) = (=1 (p)om-p. (3.10)

keZ

where p=10,---, N, and 0 <m < n.

Proof We prove this by induction on m. The m = 0 case is given in Lemma 3.2.
Now assume (3.10) holds for 0 < m < [, where [ < n — 1. We will prove that when
m =1+ 1, (3.10) still holds. Define

s(x,p,m) = Z(l‘ — k)qu(m)(x — k). (3.11)
keZ
Again, since ¢(x) has compact support, s(x, p,m) is well-defined. And we can inter-
change the sum and the differentiation because for any point x, only finite terms in
the right hand side sum of (3.11) count. So

s(e,p,l+1) = Z(l‘ — k)qu(l"'l)(:z; — k)
keZ

= 5 (= 0r6O = 1) = p- (e = D0 — 1))

keZ

= 2 (e =hrea—h) =X p (2= W60 k)

keZ keZ
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) (Z(m 1oz - k>) —p Y (e = k)60 — k)

keZ keZ
(s(x,p, ) = p-s(z,p—1,1)
(=1)P(P)d0-p) = p- (=1)((p = 1))b0,1-pa
= 0+ (=1)"(ph)do,-pt1
(=1)"(p!)do,141-p -

The lemma is proved. (]

The proof of Theorem 3.3 is almost the same as Theorem 3.2. We will look at the
Taylor expansion again.

Proof of Theorem 3.3 The case n = 1 will be proved here. The proof for the
general case will be then apparent.

We now show that

1 () = (S7(f) () |l < C27,
for some constant C, independent of j. Using the same notation as in the proof of

Theorem 3.2, we have

(5() ()

- (g () o)
— (2—1/2|k|<§+1 f( )%k( ))/

_ g Wzm (3) et
)ole-n

- [&1<( 2J+1 (
. N-1 1 i »
= 2 _f(p) z (__x) )
|k|§(§+1),4 (p:o (p! (@3
1 (N) k N / .
+ < ((gk)(g—l') )qs(zx—k)

(5 3 ol o)

p=0 |k|<(27+1)A

[SIPv
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. (%f(N) (03) (%-x)Nqﬁ’ (Qfx—k)))

Ikl<(2741)A

= 2 > (f(:z;)qb’ (ij—k)

Ikl<(2/41) A

)
|

+2f(2_ > @)

=2 |k|<(2+1)4 P
, 1 k N ,
P> (mﬂww (5] ¢'(2fw—k))

h<(2+1)4
_ ; L) k Nl
= ff(=x)+2 > vl Ok | 5 ¢(2$—k)
k<(ztna \ 1

= [)+2 Y (% (fN (0r) = N () (25—) ¢ (2fx—k)).

[k[<(274+1)A

Thus,

@)= (S @)
) (% (19000 1) (55 o) o (e ’“))

[k[<(274+1)A

= 2

12

Now applying the same estimate as in Theorem 3.2, we get
/ J ! _jN
1 () = (S7(f) () |l < C27,

where C' depends only on f and {ax}. Then (3.9) follows readily from above and
Theorem 3.2. [

If Q is a bounded open set in R, a function f € CV (Q) can be extended to
fe CY (R). So the all previous results on CJ¥ (R) function is certainly true for
cN (Q) function while the L* (R) norm is replaced with the L* (£2) norm.

When dealing with higher dimension R™ other than R, we may take the ten-
sor product of the one dimensional wavelet systems to construct higher dimensional
wavelet systems. And it is straightforward to generalize the one dimensional results

to higher dimensional cases.
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Theorem 3.4 Suppose {a;, k € Z},{a;,k € Z},--- , {af", k € Z} are a
family of sequences with finite length (i.e., there exists a positive integer
K,d, =0for 1 <1< m,and k| > K). Assume that {a}} satisfies the

vanishing moments conditions up to degree N, i.e.,for 1 <[ <m

Z(Qk)palzk = Z(2k+1)pa12k+l :07 for p:jlw,..?]\[7

keZ keZ
! !
Zazk = Za2k+1 = 1.
keZ keZ
And for 1 <1 < m, ¢'(z) is a L?*(R) solution of the two-scale difference
equation

ol(x) = Y apd (2w — k).

keZ

Then for any function f (@1, 22, ,2n) € oVt (R™),
1f (21,22, wm) = S (w0, a) [l < C27/0FD,

where C' depends only on f and the family of sequences {al}, and
; —im ky k Ko
L D A (RN Y
kl,k2,~~~,kmeZ
Oj (1) - Oy (w2) - B, ().

If in addition, ¢’ (z) € C" (R) for all 1 <[ < m, where n is a nonnegative

integer not greater than NV, then

||f($1,$27---7$m) — S](f) (x17$27...7xm)||Hn S CQ_j(N-H_n)‘

The proof is an easy modification of the one dimensional case and will be omited

here. In practice we may choose {a}} to be the same sequence, then ¢! (z) = ¢*(z) =

= ()

3.2 Definition of Biorthogonal Coifman Wavelet Systems

The wavelet approximation theorem requires the sequence {a;} satisfying the linear
conditions (3.4) and (3.5). When working in the wavelet system, we see that these

two conditions are exactly the vanishing moment conditions on the scaling function

o(x) and ¥(x).



Lemma 3.4 Suppose ¢(x),¢(x) € L*(R) satisfying

o(z) = Y axd(2e — k), (3.12)
keZ
¥(e) = (=D asd(2a = k). (3.13)

where {a;} is a finite length sequence, ¢(z) € L'(R) and it is normalized

/OO S(z)de = 1. (3.14)

— 00

Then the following two conditions are equivalent,

1. The vanishing moments of ¢(x) and (x) are both of degree N, i.e.,

Momg(¢)) = /_O:o Y(x)de = 0,

MOmp(¢) = /OO xp¢($)d$ = O7 f()rp:17...7]\/'7

MOmp(¢) = /OO Qﬂ%l}(l‘)dl‘ = O7 forp:17...7N‘

2. The sequence {a} satisfying

Z(Qk)pazk = Z(2k+1)pazk+1 =0, forp=1,---,N,

keZ keZ
Zazk = Zazk-H = 1.
keZ keZ

Proof 1 =— 2: We have

1 = /OO o(x) dx

28



Similarly,

Then it follows

0 = /_O:o (z) de
_ /_Z (;(_1) a1 (22 — k)) dz

—1)ka_k+1 .

(

[N

Zazk = Zazk-H = 1.
k k

Now assume that the equality

Z(Qk)pazk == Z(2k+1)pazk+1 =0
k k

29

(3.15)

holds for 1 < p <[, where 0 <1 < N — 1. (When [ = 0, there will be no assumption
on (3.15).) We want to prove that (3.15) also holds for p = [+ 1. Then by induction,
(3.15) will be valid for p=1,---, N.

By the vanishing moments on ¢(x) and ¢ (x),

0

/_0; () da
/0; s (Zk: ard(2r — k)) dx

a OO:L'H'l 2¢ — k) dzx
Zk:k/_oo o )

1 ~ 1
ﬁzk:ak /_Oo(:z; + k)H' o(x) dx

1 co (L (141
(8 (4o

m

44 o0
;?Zak ( + ) kl""l_m/ " o(x) dx
k — 00

m=0 m

1
9142 Z apk'™!
%



and

o0

/Oo Ly,
/Z ( —1)*a_pp1 620 — k)) dx
= Zk:( Dfa_g41 /OO o220 — k) da

1 o)
= o SV i [ B () d
k — 00
1 co (L 141
= — (—1)ka_k+1/ 2"k o) da
1 44 o0
- 92 Y (=1 asks Z ( )klﬂ_m/ r" () dx
L —00
1
= WZ(_l)ka—k—l—lkH—l
k
1
= 21? Z(—l)l_kak(l — k)l+1
k
1
_ WZ(_l)l_kak(_l)H—lkH—l
k
1

= gz () ek
2 k
(=1 I+1 I+1
= 9l+2 Z(Qk) A2k — Z(Qk + 1) agg

k k

Thus it follows immediately that

ST2E) M ag, = > (2k + 1)t lag = 0.

k k
2 = 1: This part is apparent from the above argument.

Based on Lemma 3.4, here is the proof of Lemma 3.2.
Proof of Lemma 3.2 Define

s(z) = > (v —k)Po(x—k).

keZ

30

Since {ay} has finite length, ¢(x) has compact support. So s(x) is well-defined and

periodic with 1 as a period. We have

Ps(x) = 22 (x—k)Po(x — k)

keZ
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= 223> (am(z — k)P o(2x — 2k —m))

keZ meZ

= 2° Z Z (ai—on(z — k)P o(22 — 1))

keZ e

— Z Z (@i—ok (22 — 0+ 0 — 2k)P (22 — 1))

ieZ keZ

- YYy ( ( ’ ) (20— i) (6 — 2Rl — z>)

1€l keZ 1=0

- P (( }; ) (Z(z — Qk)p_lai_zk) (22 — i)l¢(2$ — z))
1€Z 1=0 keZ

From (3.4) and (3.5),

Z(l — Qk)p_lai_gk = 507p_1 .
keZ

Thus
Ps(x) = > (20— i)'¢(2z —1) = s(22).

Y/

If we know ¢(a) is continuous, then since

[ stwyde = [ (Z<x—k>p¢<x—k>) e = [ Pds = b

keZ N

the lemma follows easily. Without assuming the continuity, we can prove the lemma
in the following way. For any ¢,5 € Z,5 > 0,

it1 i41

iy s(x)de = /iy 27Ps(2x) dx

27 27

(i+1)

1

— 97pb [ s(x)dx
2(s-1)

it
= 2(_p_1)]/ s(x)dx

= 2071 /jﬂ (Z(x — k)Po(x — k)) dx

keZ
— 9l=p=1) /OO 2Po(x)dx .

The conditions (3.4) and (3.5) imply that

/_O:o 2Po(x)de = bo.
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Then,

it1

P os(x)de = 200 VIg, (3.16)

As we know, the restriction of the Haar wavelet system on [0,1] is an orthonormal
basis of L?([0,1]), and the left hand side of (3.16) is exactly the coefficients for the

wavelet orthogonal projection at the level j. So it follows immediately that

s(z) = D (x—k)Po(a —k) = boy,.

keZ

The lemma follows. [

It is now clear why the two conditions (3.4) and (3.5) are imposed on {ay} in the
wavelet approximation theorem. All we want is that the vanishing moments of ¢(x)
and () are both of some degree N. Thus the vanishing moment conditions not only
imply the smoothness of the scaling function (and hence the wavelet function) but
also provide a very neat approximation. Based on this observation, we introduce the

biorthogonal Coifman wavelet system.

Definition 3.1 A biorthogonal wavelet system with compact support is
called a biorthogonal Coifman wavelet system (in short, BCW) of degree

N if the following two conditions are satisfied,

e the vanishing moments of the scaling function q;(:zj) and the wavelet
function ;/N)(:L') are both of degree N, i.e.,

Mom,(¢) = /Oo P¢(x)de = Sop, forp=0,---,N, (3.17)

Momp(;/;) — /Oo aPp(z)de = 0, forp=0,---,N, (3.18)
e the vanishing moment of the wavelet function ¢ (x) is of degree N,

Mom,(¢) = /R:I;p;/)(x)dx =0, forp=0,---, V. (3.19)

Note that in the definition of the biorthogonal Coifman wavelet system, although
there is no vanishing moment requirement on the analysis scaling function ¢(x), it
follows that ¢(x) also has vanishing moments up to degree N, because of the perfect

reconstruction condition.
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Lemma 3.5 For a biorthogonal Coifman wavelet system of degree N,
the vanishing moments’ degree of the analysis scaling function ¢(x) is also

N

Y

MOmp(¢) :/Oowp¢($)d$ :07 forp:17...7N‘

Proof From Lemma 3.4, it is sufficient to prove that

Zakkp =0, forp=1,---,N.
keZ

From the vanishing moment condition of the synthesis part, we have

Thus

So

Z asp(2k)™ Z aop1(2k + 1) = bgm, for0<m <p.
keZ keZ

YRk 420 agdpga = > kP ar Yy (k4 20) " argu

klcZ keZ leZ
= > K ay Som
keZ

Z Clkkp = Z kpakglk_ml

keZ kleZ
: p
= Z (—1)m Z kp_m(k + QZ)mClkCNLk+2[
m=0 m ) ez

= 2 dek+2z ( ( ) P (K 20)™ )
kleZ =0
(

= Z akak+21 k k —|— 2[
kleZ

= Z (_QZ)pakak+2[
kleZ

The perfect reconstruction condition states that

Z akak+2[ = 250717 \V/l € Z .
keZ

It follows that

Z Clkkp = Z (_QZ)pakak+2[

keZ kleZ
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= Z(—Ql)p Zak&km

leZ keZ

= ST(=20)7 - 26,

leZ

= Z 0
leZ
=0

O

Thus in a biorthogonal Coifman wavelet system, both the analysis pair {¢,}
and the synthesis pair {q;, ;/N)} have vanishing moments up to some degree N. In the
decomposition process, based on the wavelet approximation theorem, we can sample
on dyadic rationals and take these values as the discrete wavelet transform coefficients
at the starting level. We can apply the Mallat Algorithm on these sample values and
analyse the data (compression, denoising, etc). In the reconstruction process, again,
based on the wavelet approximation theorem, after applying the Mallat Algorithm on
the data, we can take the inverse discrete wavelet transform coefficients as the sample
values on dyadic rationals and reconstruct the original data. That’s why we impose
vanishing moments on both the analysis pair and the synthesis pair. Now the natural
question is whether biorthogonal Coifman wavelet systems exist. If yes, how can one

design them? We will study on the existence problem in the next section.

3.3 Construction of BCWs

In this section, we will construct biorthogonal Coifman wavelet systems and obtain
the exact formula for each degree. As is obvious, if we can construct them, then the
existence problem is solved simultaneously.

Now let’s see how many conditions are there imposed on biorthogonal Coifman
wavelet systems? From the theory of biorthogonal wavelet systems, we know that the
analysis scaling vector {ay} and synthesis scaling vector {a;} must satisfy the linear

condition

Zak = de == 2, (320)

and the perfect construction condition

Z akdk+2[ = 250717 VieZ. (321)
keZ
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The vanishing moment conditions in the definition of the biorthogonal Coifman

wavelet system are equivalent to

S @kPas = Y2k +1agey = 8op. forp=0,--, N, (3.22)
keZ keZ
> (2k)am = > (2k+ 1)Passr = bop, forp=0,---,N. (3.23)
keZ keZ

In practice, we prefer that the length of the synthesis scaling vector be shorter than
the length of the analysis scaling vector. The reason is that for longer analysis scaling
vectors, we will get more redundant information after the discrete wavelet transform,
which will be ideal for the further processing in the wavelet domain; and for shorter
synthesis scaling vectors, the inverse discrete wavelet transtorm will provide a compact
represention of the original data, which is very useful, for example, for data storage
and transmission. Based on this thought, we will first look at the synthesis scaling
vector {ax} and try to find the minimum length solution of it at each degree.

The linear condition (3.20) for {dy} is already included in (3.23) and we don’t need
to worry about the bilinear condition (3.21) right now. Thus there are totally 2N + 2
linear conditions on the scaling vector {a;}. And the minimum length solution will
have, of course, 2N + 2 elements in the finite length sequence {a;}. For symmetric
reason, we will distribute these 2V + 2 elements in {a;} as symmetric as possible.
More precisely, we are looking for a solution of the form {a_n,a_ny1, -, ans1}-
Let’s have another look at the linear equation system (3.23). By its form, these
2N + 2 linear equations can be naturally divided into two parts, those on the even
terms a9 and those on the odd terms asx4q. For those N + 1 linear equations on the
even terms, it is easy to see that the solution is exactly that all are zero except that
o = 1. For those N + 1 linear equations on the odd terms, the coefficient matrix
of these N + 1 variables dzr41 is @ Vandermonde’s matrix (so is for the even terms).
Thus the solution for these N + 1 odd terms always exist and it is unique. Using the
determinant formula of a Vandermonde’s matrix, we get the exact formulas for these

odd terms,

o if Niseven, N = 2n,

 Mpjen (25 +1) (—1)F (Qn—l) ( o )2n+1

- , _
2k+1 9N H?;ﬁk,j:—n(] _ k) 2k +1 n—1 n+k 94n—1
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o if Nisodd, N =2n—1,

Ml (241 (1) (2n—2) (2n—1 ) 2n—1

Gioprs = , _
2k+1 IN H?;]i]:_n(] _ k) 2k + 1 n—1 n -+ I3 24n—3

here we define ( 77 ) :=01f [ > mor [ <0, which is standard in combinatorial

theory.

So we have got the formula for the minimum length synthesis scaling vector {ay}
for every degree N. As it can be seen in the above discussion, the minimum length
synthesis scaling vector is unique. The next theorem tells us how to construct the

analysis scaling vector {a;} from the synthesis scaling vector {ay}.

Theorem 3.5 Assume a;, to be defined as above, depending on whether
N is even or odd. Set

Aokl = (2k41 5 (3.24)

and

Aof = 250,k - Z 521+1d21+1—2k- (3-25)
leZ

Then the resulting {ay} and {ax} will constitute a biorthogonal Coifman

wavelet system of degree N.

Proof We need to check (3.21) and (3.22).

First,
Z apdpio = Z Aoxlogy2r + Z A2k +102k41+420
keZ keZ keZ
= a_g + Z A2k 4102k 41421
keZ
= 2001 — Z A2k+102k+1420 T Z A2k 10241420
keZ keZ
= 260,
— 2507[

All remaining is to show that

Z(Qk)pa% = bop, forp=0,---,N.
keZ
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We have

Z (Qk)pazk

keZ

=3 ((Qk)p (25(% =S a2n+1a2n+1_2k))

keZ nez
= 250,]) - Z (Qk)den—l—laZn—l—l—Qk
kneZ
= 250729 — Z (2n — Qm)pa2n+16~l2m+1
m,nEZ

= 250729 — Z ((2n —|— 1) — (Qm —|— 1))p6~l2n+16~l2m+1

m nEZ

m,n€d (=0

= 250]? Z Z ( ( ) (2n + 1)]) Z(Qm + 1) G2n+16l2m+1)
= 250729 (( ) 2m + 1 G2m+1 Z 2n + 1) G2n+1)
mEZ

neZ
= 250729 (( ) 2m ‘I’ 1 a2m—|—15l p)
= 250 p ‘I’ a?m—l—l
mEZ
— 250729 - (_1)])50@
— 250729 - 507])
= 507p

O

Note that the analysis scaling vector given by Theorem 3.5 is the minimum length

solution for the analysis scaling vector. Because the bilinear condition (3.21) is exactly

Az — 250,k - Z az14142041-2k
leZ
the minimum length analysis scaling vector must be the analysis scaling vector having
the minimum number of nonzero odd terms. From (3.22) and (3.23), such an analysis
scaling vector will have the same odd terms as the minimum length synthesis scaling
vector. Thus we obtain the biorthogonal Coifman wavelet system with minimum
length.
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In the remainder of this thesis, a biorthogonal Coifman wavelet system of degree
N will always be refered to as biorthogonal Coifman wavelet system of degree N with
minimum length, which is given by in Theorem 3.5, unless it is otherwise stated. For
convenience, we will call it BCW-N.

The scaling vectors of the minimum length biorthogonal Coifman wavelet systems
with degrees N = 0,1,2,3, and 4 are listed in Table 3.1. The biorthogonal Coifman
wavelet system with degree 0 (BCW-0) is exactly the Haar wavelet system, which is
orthogonal. The biorthogonal Coifman wavelet system with degree 1 (BCW-1) is a
spline system. We include the illustrations for degree 2, 3 and 4 (BCW-2, BCW-3
and BCW-4) in Figure 3.1, 3.2, and 3.3.

3.4 Properties of BCWs

We now know how to construct biorthogonal Coifman wavelet systems. and the
scaling vectors of degrees up to 4 are listed in Table 3.1. In this section we will look

at some properties of these wavelet systems.

3.4.1 Approximation

The wavelet approximation theorem is the starting point of biorthogonal Coifman
wavelet systems (and also orthogonal Coifman wavelet systems, which will be studied
in Chapter 4). From Definition 3.1, the following theorem is just stating the wavelet

approximation theorem in the language of biorthogonal wavelet systems.

Theorem 3.6 For a biorthogonal Coifman wavelet system of degree N

with the analysis scaling function ¢(x) and synthesis scaling function q;(:zj),

if f(z) € CVYR), define, for j € Z,

fila) =273 f (Qk—]) Gin(),

keZ
where qz]k(:zj) = 2j/2q1~$(2j:1; — k). Then
[£(z) = Fi(@)]

where C' depends only on f and ¢.
If in addition ¢ € C™"(R), where n € Z,0 <n < N, then

< 27IN+Y

12

@) = P, < o2t
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Table 3.1 The Coefficients of Biorthogonal Coifman Wavelet Systems

40

N ay ag N ay a
N=0 ap = 1 ao = 1 N=3 ay = 9/16 i = 9/16
ap =1 aq 1 as = -63/256 as =0
N=1]| a,=-1/4 a5 = -1/16 is = -1/16
a = 1/2 | o =1/2 as = 9/128 s =0
ag = 3/2 ag = as =0
a = 1/2 a = 1/2 a5 = -1/256
as = -1/4 as = ar =0
a5 =0 N=4]| a_s = 15/16384
N=2| ay=3/64 a_r =0
a3 =0 s = -35/2048
a_s = 3/16 | a_2=0 a_s = 0
a1 = 3/8 a1 =3/8 a_s = 345/4096 a_q4 =0
ag = 41/32 ag = a_s =-5/128 a_s =-5/128
a = 3/4 i = 3/4 a_s = 405/2048 | a2 = 0
as = -3/16 s = a_i = 15/32 a_1 = 15/32
a5 = -1/8 is = -1/8 ao = 10317/8192 |  ao = 1
as = 3/64 ay = 15/64 i = 15/64
as =0 as = -405/2048 as =0
N=3| as =-1/256 a5 — -5/32 G5 = -5/32
a_5 =10 aq = 345/4096 as =0
a_s = 9/128 as = 3/128 is = 3/128
a_s = -1/16 | a_s = -1/16 a5 = -35/2048
a_, = -63/256 a_9 = ar =0
a_1 = 9/16 a_1 =9/16 ag = 15/16384
ap = 87/64 ag =1 ag =0

where ' depends only on f and q~$
The same results hold when replacing ¢ with 6.

3.4.2 Compact Support

From Definition 3.1, biorthogonal Coifman wavelet systems are always compactly
supported. All the analysis scaling vectors and synthesis scaling vectors have finite
length. This finiteness property is extremely useful when implementing a discrete

wavelet transform on digital computers.
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analysis scaling function analysis wavelet function
2 2
1 1
0 0
-1 -1
-2 -2
-5 0 5 -5 0 5
synthesis scaling function synthesis wavelet function
15 15
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-5 0 5 -5 0 5

Figure 3.3 The Biorthogonal Coifman Wavelet System of Degree 4

3.4.3 Symmetry

As we know, in a wavelet system, the symmetry of the scaling vector corresponds to
the symmetry of the scaling function. Thus we call a wavelet system is symmetric is
the scaling vector is symmetric. One big advantage of biorthogonal wavelet systems
over orthogonal wavelet systems is that biorthogonal wavelet systems can be sym-
metric, while orthogonal ones can’t, except for the Haar wavelet system. Symmetry
is always pursued whenever possible in applications. For example, in image coding,
if we have a symmetric biorthogonal wavelet system, then the image data can be
reflectively extended to reduce the edge effect.

The even terms of biorthogonal Coifman wavelet systems are always symmetric,
which is apparent from Theorem 3.5. Since the analysis scaling vector and synthesis
scaling vector have the same odd terms, the symmetry of a biorthogonal Coifman

wavelet system will depend solely on the symmetry of the odd terms of scaling vectors.

Lemma 3.6 If N is odd, then in a biorthogonal Coifman wavelet system

of degree N,

Aok+1 = G_2k—1, azk+1 = ad_2k-1-
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Proof Assume N = 2n — 1, for some n € N, then

~ B (—1)’“ on — 2 n—1\2n—1
RS VA B | n4k | 200

(—1)* (Zn—Z)(%r—U@n—lﬂ

(2k+1D)(n =k —1)l(n + k)! 24n-3
() 2n -2\ (2n—1)(2n —1)!
(=2k—1)(n—k —Dl(n+ k)! 94n—3
(-~
(k-4 Dnt (—k—1)n—(—k—1)—1)
‘(Qn—Q)(%r—U@n—lﬂ

n—1

n—1

n—1 24n—3
B (—1)"“‘1 2n — 2 on —1 n—1
2=k -1)+1\ n—1 n+(—k—1) | 243
= dg(—k-1)41
= d_2k—1
And
Aok+1 = azk+1 = Q_9p—1 = G_2f—1-

Thus all odd degrees’ biorthogonal Coifman wavelet systems are symmetric.

Theorem 3.7 If N is odd, then the biorthogonal Coifman wavelet sys-

tem of degree N is symmetric, i.e.,

This theorem can also be tested for BCW-0, BCW-1, BCW-2, BCW-3, and BCW-
4 in Table 3.1.

3.4.4 Smoothness

Smoothness has been paid lots of attention in wavelet analysis since smooth wavelet
systems will be more appropriate for smooth functions. That is one reason why

the Haar wavelet system is not widely used in practice. Theorem 3.3 states that if
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the scaling function belongs to some smooth function space, then we can have an
H™ estimate on the approximation error. So we would like to have some asymptotic
estimate of the smoothness of biorthogonal Coifman wavelet systems. By the Sobolev
Embedding Theorem, we know that it is sufficient to work on the Sobolev smoothness.

Using Firola’s method [14], it is straightforword to prove the following theorem.

Theorem 3.8 For a biorthogonal Coifman wavelet system with degree

N, its Sobolev smoothness is

log 3
= [1- N log N) ~ 0.2075N .
SN ( 210g2) + O(log N) 0.2075

We borrowed a Matlab program provided by P. Heller to calculate the Sobolev
smoothness of biorthogonal Coifman wavelet systems. The results of the first ten are

listed in Table 3.2. The BCW-0, which is the Haar wavelet system, and the BCW-1,

which is a piecewise linear spline system, are omitted from the table.

3.4.5 Unconditional Bases

As we know, in a biorthogonal wavelet system with the analysis wavelet function ()

and synthesis wavelet function ;/N)(:L'), the wavelet expansion

J
fo=Jim 30N < fodie > b
i=—J keZ
holds only in the weak L? sense. Without any other assumption, the ), or ;/N)M
may even fail to constitute frames. Though we can’t derive orthonormal bases from
symmetric biorthogonal wavelet systems, we do desire to have some reasonable bases,
such as unconditional bases where we can interchange the order of the summation
in the wavelet expansion. In a Hilbert space, an unconditional basis is also called a

Riesz basis. The ;. ;/N)M constitute two dual Riesz bases if and only if

/Oo $(x)d(x — k)de = éox VkEZ. (3.26)

— 00

In [7], A. Cohen, 1. Daubechies, and J.-C. Feauveau proved several equivalent condi-
tions of (3.26). But none of them are easy to verify. Here we give a simple criterion

which is a variation of Lawton’s condition in the orthogonal wavelet system.



Table 3.2 Sobolev Smoothness of Biorthogonal Coifman Wavelet Systems

N biorthogonal Coifan wavelet system
analysis scaling function | synthesis scaling function
2 1.200 1.839
3 1.179 2.441
4 1.773 2.714
5 1.772 3.175
6 2.292 3.409
7 2.305 3.793
8 2.793 4.004
9 2.815 4.344

Lemma 3.7 In acompactly supported biorthogonal wavelet system with
the analysis pair {¢(x),%(x)} and synthesis pair {q;(x),;/;(x)}, define a

multiresolution matrix 7' = (tz,),

1 N
ley = 2 > aplpgioak
meZ

where {a;} and {a;} are the scaling vectors with finite length. If

| élayde = [ da)de = 1,

/_Oo@/)(x)dx = /_Oo@/;(x)dx =0,

and T has 1 as a nondegenerate eigenvalue, then

/_Oo $(2)3(x — k) dr = bop VhEZ.

Proof Define

We have

S — /_OO (Z A (20 — m)) (Z dnq;(Z:Jc — 2k — n)) dx

neZ

44
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= > amdn/ o(2x — m)qz(Z:L' — 2k —n)dx
m,nEZ -
1 [ ~
= - > aman/ dlx)p(x + m — 2k —n) dx
2 m,nEZ -
1 Z .
= = U GnC2k—m+n
2 m,nEZ
1 Z .
= 3 U G 4]—2kC]
2 m,leZ
= Z tracr,
leZ

i.e.

Te = c.

Thus ¢ is an eigenvector of the multiresolution matrix 7" with eigenvalue 1. Since 1 is
a nondegenerate eigenvalue, and (---,0,---,0,1,0,---,0,---) is also an eigenvector
with eigenvalue 1, it follows that ¢ = ~(---,0,---,0,1,0,---,0,---), or ¢, = v6o for
some constant v. Using the argument similar to the one in Section 2.2.3, we will get
~v=1.So

/Oo $(2)3(x — k)dr = o, VkEZ.

— 00

O

Based on the lemma, it is easy to check that for BCW-0, BCW-1, BCW-2, BCW-3,
and BCW-4, ¢ (x) and ;/N)(:L') all constitute dual Riesz bases. A more general theoretical

discussion can be found in [38].

3.4.6 Multiplication-Free Discrete Wavelet Transform

Though we didn’t expect it, it turned out that the scaling vectors of biorthogonal
Coifman wavelet systems are all dyadic rationals, i.e., all the elements in the scaling
vectors are of the form (2p + 1)/29, for some p, ¢ € Z. This is a really attractive fea-
ture since we can therefore implement a very fast multiplication-free discrete wavelet
transform on digital computers. It is one of the main advantage of biorthogonal
Coifman wavelet systems over other widely used biorthogonal wavelet systems, such
as the Cohen-Daubechies-Feauveau 9-7 biorthogonal wavelet system (CDF-97) [7].
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Theorem 3.9 In a biorthogonal Coifman wavelet system of degree N,
the scaling vectors are dyadic rationals, i.e., V& € Z, there must exist

P1, P2, 1, G2 € Z, such that
2p1 —|— 1 - B 2p2 —|— 1

a. =
291’ k 2692’

whenever a; or a; are nonzero.

ap =

Proof It is clear that the addition, subtraction, or multiplication between two
dyadic rationals is still a dyadic rational. Or we can say these three operations are
close in dyadic rationals. So all we need to prove is that dsp11 is a dyadic rational,

for all nonzero dsx11. There are two possible cases.

1. if N is even, N = 2n,
N (—1)’“ 2n —1 2n 2n+1
a = —.
BT %41\ n—1 n+k | 2t

2n — 1 2
Both " and " are integers. Thus it is sufficient to prove
n—1 n+k

n—1 n+k

for asxyq being nonzero are —n < k < n. When k£ = —1,0, or n, the proof is

trivial. So first let’s look at 0 < k£ < n.

2n — 1 2
that (2k + 1) can divide ( " ) " (2n + 1). All possible choices

Recall that for two positive integers a, b,

a®@®) | bl
the function d(a,b) is defined by
> b b b b
d b) = — = — — —
(@.8) i= 2 L) = L+ Ll +o 4 L]+

where |-] is the integer part of a real number. Since

on—1 on B (2n — )!(2n + 1)!
( n—1 ) (n+k)(2”“) = =)Wl i =R

it suffices to show that
2n —1 2n +1 n—1 n n+ k n—=k
>
LQk—l—lj—l_LZk—l—lJ - LQk—l—1J—|_L2k—|—1J—|_L2k—|—1J—|_L2k—|—1
Assume n — k =12k + 1) +r, where t,r € Z,t > 0,0 < r < 2k.

J+1. (3.27)
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o if r =0, then
n+k =t2k+1)+ 2k,

2n4+1 = (2t 4+ 1)(2k+1).

So
2n +1 n—k n+k
L2k+1J =2+l = L2k+1jﬂzk+1j+l
We know that ) | |
n — n — n
| >
L2k+1J - L2k+1j+t2k+1j’

Thus (3.27) follows immediately.
o if 1 <r <k, then
n=1t2k+1)+(k+r),
n—1=1t2k+1)+(k+r—-1),
o —1 = (2t + 1)(2k + 1) + (2r — 2).
Thus ) | |
n— n— n
= 2141 =
LQk—l—lJ + LQk—l—lJ—I_LQk—I—l
It implies (3.27).

J+1.

o if k+1 <r <2k, then
n+k=0t+D)2k+1)+(r—1),

2n+1 = (2t+2)2k+ 1)+ (2r —2k—1).

So
2n +1 n—k n+k

= 21+2 =
LQk—l—lJ + LQk—l—lJ—I_LZk—I—l
Again, we get (3.27) from the above equality.

J+1.

Now suppose —n < k < —2. Set [ = —k,2 <1 < n. We want to show that

2n —1 2n +1 < n—1 n n+1 n—1

ot =) 2 gl gl g g B28)

Assume n — [ =1(2l — 1) + r, where t,r € Z,1 > 0,0 <r < 2] — 2.
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o if 0 <r <[ —2, then
n=1t20—-1)+{+r),
n—1=1t2l-1)+{+r—-1),
2n—1 = (2t+ )20 = 1)+ 2r.
bo M — 1 |
n — n— n
L) =241 = g+ 5
And (3.28) follows.
o if [ —1<r<2l—3, then

J+1.

n+l =@+ -1)+(r+1),

2n+1 = (2t4+2)20 —1)+ (2r — 20+ 3).

So
L2n—|—1J n+1 n—1
20— 1 -

o if r =2/ — 2, then

n+l = (t+2)20-1),
2n+1 = (2t+3)(20-1).

So
2n +1 n+1 n—1
L21—1J =243 = L21—1J+L21—1

2. 1f Nisodd, N =2n — 1,
_ (=D [ 2n =2 2n—11\2n—-1
ka1 = 241\ n—1 n+k 24n—3
Since dgpy1 = d_9k—1, 1t will be sufficient to only prove for the case 1 < k < n—2.
Assumen —k —1 =12k 4+ 1)+ r, where t,r € Z,1 > 0,0 < r < 2k.

J+1.

o if r =0, then
n=t2k+1)+(k+1),

I —1 = (2t+1)2k+1),

i.e.

(2k +1)|(2n — 1).
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o if 1 <r <2k, since

2n — 2 2n — 1 B (2n —2)!(2n — 1)!
n—1 n+k (= Dln =Dl n+k)n—k-11"

we will prove the inequality

2n — 2 2n —1 n—1 n—1 n—k—1 n+k
>
SYR v B by e B ol sy o e sy

J+1.

]

i. 1 <r <k, then

n—1=1t2k+ 1)+ (k+r),
Mm—2 = (2+1)(2%k+ 1)+ (2r —1).
50 2 — 2 n—1 n—1
Grgr) =2+ = gl g
ii. k41 <r <2k, then

J+1.

n+k = 0t+1)Q2k+1)+r,

M —1 = (2+2)2k+1)+ (2r —2k—1).

2n —1 n—k—1 n+ k

- 2% 4+9 = 1.
1) + S !t

]

3.4.7 Convergence to Sinc Wavelet System

The sinc wavelet system is a basic wavelet system whose scaling vector {a3"¢, k € Z}

is defined by .

W = Sop, alTC, = _(z(k Jlr) j_ﬂ .
It had been a problem for some time to find a sequence of scaling functions with
compact supports which approximate the function sinc(wx) = Siﬁ%, the scaling func-
tion of the sinc wavelet system. This problem is important because of the special
relation of the sinc function to signal processing applications. The family of biorthog-
onal Coifman wavelet systems just provides a very suitable candidate which also has

growing smoothness.
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Theorem 3.10 Suppose {aY,k € Z} to be the synthesis scaling vector

of the biorthogonal Coifman wavelet system of degree N. Then

1/2
= lim (Z (&ff — azmc)2) = 0.

2 N

o 6 - ()

N—co

Before proving Theorem 3.10, we first prove that " converges to a*"*° termwise

Lemma 3.8 Assume the same condition as in Theorem 3.10, then

Proof From the definition, we only need to check
: ~N sinc
lim ag,,, = a3y . (3.29)

N—co

First let’s look at the case when N is even, N = 2n. Assume |k| < n (otherwise we

can choose a larger V), we have

(—1)’“ 2n —1 2n n 4+ 1
S

i, =
2k+1 2k+1\ n-1 n+k
(—1)’“ (2n — D!(2n + 1)!
2k+1 24 Y(n — Dnl(n — k)l(n + k)
We want to show that
2n — (2 ! 2
(2n — D20 + 1) _— (3.30)
7

y
w0 2401 (n — Dlnl(n — k)(n + k)]

Recall that Stirling’s formula states
n!
=1

lim '
n—00 \/Irmntl/2e—n

So
(2n — D!(2n + 1)!

y
nee 201 — Dlnl(n — k)(n + k)
(2n o 1)2n—1/2(2n T 1)2n—|—3/26—1

7T(n _ 1)n—1/2nn—|—1/2(n _ k)n—k—l—l/Q(n + k)n—l—k—l—l/?
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o e! <2n—1)”—1/2<2n+1)”+1/2<2n—1)”
= lim
n—oo ng \ n — | n n—k

on+ I\t (n—k h=1/2
' ( n+k ) (n + k)
-1
— lim 264 Con=1/2,1/2 _gnt1/2,1/2 9n 1/2 gntl,—1/2 |
n—00 g

2

s

We have used
. N . N 1
hm(l—l——) = e, hm(l——) = ¢
in the third step. Then (3.30) is proved.
When N is odd, N = 2n — 1, the ratio

d]zvk"'l = 2n — 1 — 1 as N —
dévkj_ll 2n + 2k
Then (3.29) also holds when N is odd. ]

The next weapon we need is Lebesgue’s Dominated Convergence Theorem of

(R).

Theorem 3.11 (Lebesgue’s Dominated Convergence Theorem) Assume
{c;},{ci}, - are a family of I*(R) sequences with the {* norm ||(c)||z =
(Sp €)Y, Suppose (di) € P(R), and Vk € Z,dy > 0. If

lim ¢} exists for all k€ Z,

n—oo

and
ler| < di forall ke Z.

Then (limy,—.o €§) ez € I*(R) and

‘ (hm CZ)
n—o0 keZ

Proof of Theorem 3.10 Since

= Jim [[(c)ll -

l2 n—00

lim (&) —ai™) = 0 for all k,

N—co
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to apply Theorem 3.11, we just need to find a [*(R) dominating sequence {dy, k € Z}
such that
lay —ai™| < dy for all k.
If N is even, N = 2n, we can assume |k| < n since otherwise a_; = 0 is always
bounded. Note that
(n—k)ln+k)! > (n!)2
then

(2n — 1)!(2n + 1)!
‘(Zk + )24 (n — D)Inl(n — k)l(n + k)!

oyt

(2n — D!(2n + 1)!
(2k + 1)24=1(n — 1)}(n!)3

Set k = 0 in (3.30),

So for N large enough,
(2n — 1)!(2n + 1)!

24n=1(n — D)l(n!)? —
1
|a2k-|—1 > ‘m‘
If Nisodd, N =2n —1, since

—_

(n+E)ln—1-F%K! > (n—1)nl,

B 1 2n — 2 2Zn—1 1\ 2n—-1

@3] = 2k+1\ n—1 n4k | 203
(20— 1)1

2032k + 1)(n — DN (n 4+ k)(n — 1 — k)!
3 (20— 1)1

12032k + D) ((n— DY) (n — 1)In!

I
%11

we have

Because

~N sinc __
th a; = ai™ = —,
— 00 v
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it follows that

al¥ < 1 for N large enough .

Then

1
~N
|agpqq] < ‘m‘

Set
2

‘ 1
2k +1

2k +1
we have (dy)rez € *(R) and

sinc
“|‘ |a2k-|—1 < ‘

dog+1 = , dog = 0
@ —a™| < d,
By Theorem 3.11 and Lemma 3.8,

= 0.

l2

lim HdN — o
N—oo

The theorem follows. [

The Mallat Algorithm only involves scaling vectors. Using the Cauchy Inequality,
one can show that the discrete wavelet transform of biorthogonal Coifman wavelet

systems converge to the discrete wavelet transform of the sinc wavelet system.
Corollary 3.2 If {s;,k € Z} is a [*(R) sequence, (3 s2)"/% < oo, then

Nlim DWT(BCW-N, (s;)) = DWT(sinc, (sx)).

3.5 Conclusions

In this chapter, we have studied various properties of biorthogonal Coifman wavelet
systems. In practice these properties really show why biorthogonal Coifman wavelet
systems are considered one of the best wavelet systems available today. The image
coding evaluation of biorthogonal Coifman wavelet systems is included in Section 5.8.

In [55], a generalization of biorthogonal Coifman wavelet systems is discussed. In
it, the condition that the analysis wavelet function and synthesis wavelet function
must have the same degree of vanishing moments is relaxed. Interested readers may

refer to that paper.
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Chapter 4

Orthogonal Coifman Wavelet Systems

As we know, orthogonal wavelet systems not only provide orthonormal bases of L*(R),
but also provide unconditional bases of L?(R), for 1 < p < oo, while biorthogonal
ones can’t. And orthogonal wavelet transform will preserve the L? norm. Thus we can
have exact error estimates in the wavelet decomposition domain. So only orthogonal
wavelet systems can be included in the wavelet packets, while biorthogonal ones can’t.
These are several advantages of orthogonal wavelet systems over biorthogonal ones.
One main defect of orthogonal wavelet systems is that they can’t be symmetric, except
for the Haar wavelet systems.

Orthogonal Coifman wavelet systems were first studied by I. Daubechies in [10]
(she called these wavelet systems Coiflets). In [10] a method to construct these wavelet
systems of even degrees (which will be odd degrees in our definition, see below) was
proposed and the general existence problem is still open. Orthogonal Coifman wavelet
systems seems more “symmetric”, more smooth than the Daubechies wavelet systems.

In this chapter we will study these orthogonal Coifman wavelet systems.

4.1 Defintion of Orthogonal Coifman Wavelet Systems

Similar to biorthogonal Coifman wavelet systems, orthogonal Coifman wavelet sys-
tems are compactly supported orthogonal wavelet systems with vanishing moments

equally distributed for the scaling function and wavelet function.

Definition 4.1 An orthogonal wavelet system with compact support is
called an orthogonal Coifman wavelet system (in short, OCW) of degree
N if the vanishing moments of the scaling function ¢(x) and the wavelet
function ¢ (x) are both of degree N, i.e.,

Mom,(6) = [ aTé(e)de = 8o,y forp=0,-+, N,

Momp(;/)) = /Oo l’p@b(l')dl' = 07 forp:07...7]\/'.
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4.2 Vanishing Moments and Wavelet Approximation

Lemma 3.4 states that the vanishing moment conditions on the scaling function and
wavelet function are equivalent to those on the scaling vectors {ay}. So Theorem 3.2
holds for orthogonal Coifman wavelet systems. Since these are orthogonal systems,

we can prove it in a more direct way.

Theorem 4.1 For an orthogonal Coifman wavelet system of degree N
with the scaling function ¢(x), if f(x) € C(])V’l(R), define, for j € Z,

File) = ng%f (Qk—]) $ik(),

where ¢;x(z) = 2//2¢(2/2 — k). Then

< O27IWNH)

| £(x) = Fi(2)]

12

where C' depends only on f(x) and the scaling vector {ay}.

Proof In an orthogonal wavelet system with the scaling function ¢(z) and wavelet

function ¢(x), we have

Ir =7

= (=2

PO =P

2’

where the wavelet orthogonal projection

P = S ([ @osule)de) - ().

keZ T

We will prove

|F=Pi(p)|,, < c27V*, (4.1)

12
and
[P = F|,, < c27n, (4.2)

By the orthonormality of the wavelet system,

L2

ZZ < o > g

I>7 keZ

£ =P

2 ‘
I>7 keZ

1/2
= (Z Z (< f7 77Z)l,k >)2) )
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where o, = 2/%(2'z — k). Using the vanishing moments of the wavelet function

(),
< f7 77Z)l,k >

/Oo Flz) - 2722 — k) da
— 97l /_O;f (“’;k) () dx

5 [ k nfk\ = e % x\ 2
- (f(@)””(@)@* ey

FOV-1) 2_13 LA\N-1 ) Wr(;il—@)x 2N
Ly EEE ) v
e[ S (3) v

= /°° (W)x%(@dx

_ z—ifvv!w) r (f(N) (Hk—l—(Qll—@)x) i (;)) V(e da

where 0 < § < 1. Now using the same estimate as in the proof of Theorem 3.2, one

can show that

[r=Pin]], < c27iv,
where C' depends only on f(z) and ¢ (x).
For (4.2), we have

[P =7,

_ (Z < fo x> @yk(l‘)) (2 Ty (2]) Pisle ))

keZ keZ

12

il

2
1/2

(Z (< I oin > — 972 (

keZ

Using the vanishing moments of ¢(x),

<fow> = [ @) PPe@a— k) de

— 9-if? /_O;f (x; k) é(x) da
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- (o) e (5) s T )
FOV-1) 2% LAN-1 f) 6%4—(217;9)1’ N
+ (N—(u)(E) * (N! )<27) )¢<x>dw
— o-ilzg (%)+2—j/2/_°:0 FN) (%;iﬁ) (%)N¢(x)dx7

where 0 < 8 <1. So

< frdin > =270 (E) = Q_j/z/

o V) (ﬁk-l—(zlj—é’)x) (x)N¢(x)dx

2 —co N 2
Hpj(f) _ f]‘ L < Co—i(N+1)
Combining (4.1) and (4.2), the theorem follows. O

The above proof gives us insight of the different roles of the vanishing moments of
the scaling function ¢(x) and wavelet function ¢(x). The vanishing moments of ¥ (x)
will reduce the error in the wavelet orthogonal projection, or the distance from f(x)
to the projection space, which is spanned by {¢; x(z), k € Z}. The vanishing moments
of ¢(x), on the other hand, will reduce the distance between the wavelet orthogonal

projection and the wavelet sampling approximation in the projection space.

4.3 Existence and Construction

A big problem concerning orthogonal Coifman wavelet systems is the existence prob-
lem. Till now we still don’t know whether orthogonal Coifman wavelet systems exist
for an arbitrary degree. I. Daubechies discussed the construction of odd degrees with
a preimposed forms. But even for the odd degrees, the existence problem is not
solved. Here we propose a numerical method starting with biorthogonal Coifman
wavelet systems.

Biorthogonal Coifman wavelet systems and orthogonal Coifman wavelet systems
are connected via the same vanishing moments imposed on scaling functions and
wavelet functions. The only difference between these two is that the quadratic con-

dition in orthogonal Coifman wavelet systems

> arappa = 260y, VIEZ
keZ
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is replaced by the bilinear condition

Z akak+2[ = 250717 \V/l € Z .
keZ

How to construct orthogonal Coifman wavelet systems from biorthogonal Coifman
wavelet systems is the problem we are tackling on. One of the most powerful method
to approximation a solution of some system with a known starting point is the well-
known Newton’s method. One drawback of Newton’s method is that even though
numerically Newton’s iterates converge to some point, we still can’t assert the limit
will be exactly a solution. By utilizing a fundamental result due to L. Kantorovich,

the existence for some orthogonal Coifman wavelet system can be proved theoretically.

Theorem 4.2 (Newton-Kantorovich Theorem) Assume D is a bounded,
open subset of R", f: D — R" is C'! on a convex set Dy C D such that

f'(x) = FWll < Alle =yl VYa,y e Do.

Suppose that there exists an x¢ € Dy such that || (f’(:z;o))_l || < /B and
a = Byn < 1/2, where n > || (f'(w0)) ™" f(wo)||. Set

o= (B - (1 -20)"7, = (BT (- 20)1,

and assume that F(:L'o, t*) C Dg. Then the Newton iterates

wepr = ap— ()7 flan), k=0,1,---,

are well-defined, remain in B(z¢,t*) and converge to a solution z* of
f(z) = 0 which is unique in B(xo,t™) N Dy. Here B(xg,r) denotes the
open ball of radius r about the point zg, and B(xg,7) is the close ball.

The basic idea of the proof is to construct a majorizing sequence for . For a
complete proof and some applications of the Newton-Kantorovich theorem, see [26]
and [27].

The Newton-Kantorovich Theorem is just one example that one can get theoretical
results from numerical computation. In our case, this theorem will enable us to prove
the existence of orthogonal Coifman wavelet systems of degrees up to 9.

It is clear from the definition that the degree 0 orthogonal Coifman wavelet system
is exactly the Haar wavelet system with {ag = 1,a; = 1}. Next we will go for

orthogonal Coifman wavelet system with higher degrees.
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a. N=1

b. N=2

The significance of the Newton-Kantorovich Theorem is that even if we don’t know
the existence of the solution of f(x) = 0, we can still apply the Newton’s iteration
method. If the numerical results are good enough (i.e., the conditions of the Newton-
Kantorovich Theorem are satisfied), then it follows that f(x) = 0 has a solution and
the numerical results will give a fast approximation.

Thus we propose our Newton’s method algorithm to get orthogonal Coifman
wavelet systems, starting from biorthognal Coifman wavelet systems. Note that since
the vanishing moment conditions are just linear equations on the scaling vector {ay},
every Newton iterate x; will always satisty the vanishing moment conditions.

Newton’s method algorithm:

1. Take the synthesis scaling vector of the biorthogonal Coifman wavelet system

of degree N as the initial point x,.
2. Compute Newton iterates starting from zg.

3. If for some xy,, the Newton-Kantorovich condition

Y i) T (re) ™ Flag )] < 1/2
is satisfied, where 7 is the Lipschitz constant of f'(x), then define yo = xy,.

4. An error estimate is needed if we are trying to prove the above inequality from

numerical results.

5. From the Newton-Kantorovich Theorem, the Newton iterates starting from yyq

converge to a solution of f(x) = 0.

6. Check that 1is not a degenerate eigenvalue of the corresponding multiresolution
operator T,,. Then the iterate y; we choose will be a good approximation to the

scaling vector of the orthogonal Coifman wavelet system of degree N.

Based on the above algorithm, here we give the scaling vectors of orthogonal
Coifman wavelet systems of degree through 0 to 9.

Some illustrations of orthogonal Coifman wavelet systems are included in Figure
4.1 and 4.2
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Figure 4.1 Orthogonal Coifman Wavelet Systems of Degree 1 an 2
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Figure 4.2 Orthogonal Coifman Wavelet Systems of Degree 3 and 4
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4.4 Conclusions

In the chapter we have seen that the the vanishing moments of the scaling function
and the wavelet function play different roles in the wavelet sampling approximation.
Depending on the specific application, we can distribute more vanishing moments on
the scaling function, or more vanishing moments on the wavelet function, or let them
have the same vanishing moments. The third case is much more valuable, due to the
wavelet approximation theorem. Also a numerical method is proposed to construct
orthogonal Coifman wavelet systems. Usually it is impossible to verify a Cauchy se-
quence by numerical computation. But with the Newton-Kantorovich Theorem, we
can prove the existence of orthogonal Coifman wavelet systems by numerical compu-

tation and get a good approximate solution by the Newton’s method.
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Chapter 5

Image Coding

The advent of multimedia computing has led to an increased demand for digital
images. To make widespread use of digital imagery practical, some form of data
compression must be used, since the storage and manipulation of these images in
their raw form is very expensive. Thus image data compression has been widely used
in still images, medical imaging, seismic waves, synthetic aperture radar images, FBI
fingerprints, etc. It has been a hot topic both in research and in application for a long
time. In the last ten years, the wavelet analysis has become a cutting-edge technology
in this area. Since the wavelet transform has very good localization properties in both
the spatial domain and the frequency domain, it can handle non-stationary signals
very efficiently and provide efficient compression algorithms.

In this chapter, we will present our work in image compression. After briefly
viewing some background material, we will first study two of the best image com-
pression algorithms. One is J. Shapiro’s embedded zerotree wavelet algorithm. The
most significant contribution of Shapiro’s work is that it is a whole new idea and
sparkled lots of other interesting compression algorithms. Another one we will look
at is A. Said and W. A. Pearlman’s codetree algorithm. This algorithm is a combi-
nation of Shapiro’s algorithm and their set partitioning sorting algorithm. Motivated
by these three people’s nice work, we propose a new embedded wavelet-based image
compression algorithm, the Wavelet-Difference-Reduction algorithm. It combines the
discrete wavelet transform, differential coding, binary reduction, ordered bit plane
transmission and adaptive arithmetic coding. After the detailed description of this
new algorithm, we will compare it with the other two studied early this chapter and
see various applications of the new algorithm. And we propose a novel method to

process image data in the compressed wavelet domain.
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5.1 Some Background

A typical transform image coder consists of three subsystems: a transform subsys-
tem, a quantization subsystem, and an entropy coding subsystem. In the transform
subsystem, the input image data is stored in another form by some invertible trans-
formation. The purpose of the transform subsystem is to remove the redundancies in
the original image data to a large extend. In the quantization subsystem, the quan-
tizer (scalar quantizer or vector quantizer) allocates different number of bits for the
representation of different transform coefficients. The quantization is the only step
that some information of the original image data will be lost. The entropy coding
subsystem is a lossless data compression process on the stream of quantized transform
coefficients. Typical choices of the lossless data compression algorithms are Huffman
coding, or arithmetic coding [57].

Right after I. Daubechies’s work on compactly supported orthogonal wavelet sys-
tems [8], wavelet analysis has been immediately applied to image compression and
showed its big potential, since wavelet transform can remove the spatial and spectral
redundancies of the image data pretty well. Thus it becomes the ideal choice for
the transform subsystem. The main difference between different wavelet-based image
coder is in the quantization subsystem. We can choose either scalar quantizer or vec-
tor quantizer. And in each quantizer, lots of different methods have been proposed
to improve the compression performance.

Embedded image coding is a way to successively approximate the original image.
At the beginning of the bit steam, the embedded code contains all lower rate (here
the rate is the bit rate, or the number of bits per pixel) codes. As the encoding
continues, more and more fine detail will be sent to the embedded code, in the order
of importance. The word “embedded” means that all the information in the lower
rate codes is contained in the higher rate codes. AsJ. Shapiro pointed out in his paper
[45], embedded coding is similar in spirit to binary finite precision representation of
real numbers. And using embedded coding, the encoder can stop at any point when
some target rate or distortion metric is met. Also the decoder can stop at any point
and give a reconstruction image, as if the encoder had terminated its encoding job
at the same lower rate. Two examples of embedding image codings are J. Shapiro’s
embedded zerotree wavelet algorithm [45] and A. Said and W. A. Pearlman’s codetree
algorithm [43], which we will study next.
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5.2 Shapiro’s Embedded Zerotree Wavelet Algorithm

In his celebrated paper [45], J. Sharipo presented the embedded zerotree wavelet
algorithm (EZW). First he defined a spatial orientation tree structure. In a wavelet
decomposition domain® with N scales, except for the high-pass coefficients at the
finest scale, HL{, LHy, HH;, and the low-pass coefficients at the coarsest scale, L Ly,
every coefficient at a given scale is related to a set of four coefficients at the next finer
scale of similar orientation. The coefficient at the coarse scale is called the parent and
the four coefficients corresponding to the same spatial location at the next finer scale
of same orientation are called children. For every coefficient in L Ly, we define three
coefficients, from H Ly, LHy, HHy, respectively, with the same spatial location, as
its children. A parent-child relationship is illustrated in Figure 5.1. A scanning of the
coefficients is performed in such a way that no child node is scanned before its parent.
A typical scanning pattern is indicated in Figure 5.2. The scan begins at L Ly, then
HLy, LHy, HHy, at which point it moves on to scale N —1, etc. A wavelet coefficient
z is defined as insignificant with respect to a threshold T'if |x| < T, otherwise x is
said to be significant. And x is an element of a zerotree if & and all its descendants
are insignificant. An element x is called a zerotree root if it is an element of zerotree
but its parent is not an element of zerotree. Moreover, x is said to be an isolated zero
if = 1s insignificant but has some significant descendant.

With these settings, we are ready to encode the image using EZW. First select a
threshold 7' such that |z;| < 2T for all the wavelet transform coefficients x;, and for
some jo, T < |xj,|. Initially put all the wavelet transform coefficients on the dominant
list, with the order shown in Figure 5.2. We begin with the dominant pass. For each
x; on the dominant list, if x; is significant with respect to 7', then output its sign
and move z; to the subdominate list. If z; is insignificant, then output a symbol (say
“I”) if it is an isolated zero, or output another symbol (say “Z”) if it is a zerotree
root. In other cases, nothing will be output since x; is predictably insignificant. The
dominant pass is followed by a subdominate pass. First, the threshold T is divided
by 2. And the refinement value (the meaning of refinement values will be given in
Section 5.4) of x; in the subdominate list with respect to T" will be output. The
subdominate pass is followed by the dominant pass of the next round. And the cycle

keeps going until some target rate is met.

*We assume a two-dimensional setting with wavelets scaled by power of 2, although this is not
essential for these algorithms.
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Figure 5.1 Parent-Child Dependencies in the
Wavelet Decomposition Domain with 3 Sales.

The EZW takes advantage of the predictably insignificant coefficients and the

adaptive arithmetic coding can encode the symbol stream very efficiently.

5.3 Said and Pearlman’s Codetree Algorithm

A. Said and W. A. Pearlman introduced a set partitioning sorting algorithm and
developed their state-of-the-art Said-Pearlman-Codetree algorithm (SPC) [43] after
Shapiro’s work. Using the same spatial orientation tree structure, they defined three
ordered lists, LIS, list of insignificant sets, LIP, list of insignificant pixels, and LSP,
list of significant pixels. LIS is the list of descendants sets, with two types A and
B, and each element of LIS is represented by the ancestor. Type A is a set of all
descendants of some coefficient; and type B is a set of all descendants excluding
its children, so it looks like the union of four (or three) elements in A, yet it isn’t

generated in this manner.
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Figure 5.2 Scanning Order of the Wavelet
Transform Coeflicients with 3 Scales.

Initially LSP is empty, and LIP and LIS are equal to LLy. In the sorting pass,
all z; in LIP will be checked for significance, and the test result will be output. When
some z; is found significant, move it to LSP and output its sign right after the test
result. Then for z; in LIS, if it is type A, i.e., the set of all descendants of x;, check
if x; has any significant descendants and output the result. If yes, check the children
of z; and output the test result. If some child is significant, move the child to LSP
and output its sign. If some child is not significant, move the child to LIP. If z; has
other descendants than children, i.e., x; is at the third scale level or even coarser,
move x; to type B. (That’s where type B comes from.) For x; in LIS with type B,
if it has significant descendants (not including its children), move ; from LIS and
move all its children to LIS as type A. After the sorting pass, we have a refinement
pass. In the refinement pass, the refinement values of elements in LSP except those
included in the sorting pass of this round (since these coefficients’ refinement values
must be “17), will be output. Then the threshold is divided by 2, and it goes back

to the sorting pass and another around starts.
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In SPC, the set partitioning sorting algorithm is very efficient such that the symbol
stream can be represented by using only two symbols, “0” and “1”. (Even the positive
and negative signs can be represented by “0” and “1”.) Without arithmetic coding,

its performance is already superior to EZW.

5.4 Wavelet-Difference-Reduction Algorithm

In this section, we propose a new embedded image coding algorithm. Similar to EZW
and SPC, it consists of two parts, a sorting pass and a refinement pass. In the sorting
pass, we will show how to use reduced indices of wavelet transform coefficients to
encode the positions of significant coefficients directly. As in Section 5.2, a wavelet
transform coefficient x is defined as significant with respect to a threshold 7" if || > T,

otherwise x is said to be insignificant.

5.4.1 Differential Coding

Differential coding [18] takes the difference of values of successive elements. It usually
produces a set of smaller values, compared with the original set. For example, if the
elements of a set & are preordered in a monotonically increasing order, then the

differential coding result §" will be a set with smaller values. For example, if
S = {1,2,5,36,42},

then
S = {1,1,3,31,6}.

As it is clear, 8’ contains relatively smaller values than S.

We will call 8" the difference set of S. And we make the convention that the
value of the first element will not be changed in differential coding. Meanwhile it is
straightforward to retrieve back the original set S from the difference set S’ by taking
the partial sum of §’. So we can say that & and &’ contain the same information

though &’ will be much easier for transmission and storage.

5.4.2 Binary Reduction

Binary reduction [15] is one of the representation of positive integers, with the shortest
representation length. By definition, the binary reduction removes all the leading

“0” bits and the first “1” in the binary representation of a number, or equivalently,
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removes the most significant binary digit. For example, to get the binary reduction
of 19, since

1910 — 100112,

where the subindex 10 means the decimal representation, and the subindex 2 means
the binary representation, we have the binary reduction of 19 is 0011.
When we have a set S of positive integers, we can apply binary reduction to each

element to get the reduction set R(S) of S. For example, if
S = {1,1,3,31,6},

then the reduction set

R(S) = {,,1,1111,10} . (5.1)

Note that there are no coded symbols before the first two commas “,” in R(S). Since
all elements in S are positive integers, the inverse operation of the binary reduction
will be adding a “1” as the most significant bit in the binary representation. Applying
this inverse operation on the reduction set R(S) will produce the original set S.
Again, the two sets S and R(S) will contain the same information while R(S) will

require less space in digital computers. In practice, one will need some end of message

(A

symbol to separate different elements in the reduction set R(S), like the comma ©,

in (5.1).

5.4.3 Coding the Significant Maps

The following problem is considered, how to code the indices of significant wavelet
transform coefficient, or the significant maps, in an efficient way? Both J. Shapiro’s
embedded zerotree wavelet algorithm and A. Said and W. A. Pearlman’s codetree
algorithm use spatial orientation tree structures to implicitly locate the significant
coefficient, here we present a direct approach based on differential coding and binary
reduction.

Assume S is the index set of significant wavelet transform coefficients. We can also
assume the elements of S are ordered in a monotonically increasing order. To code S,
the first step, of course, is the differential coding. After differential coding, we get the
difference set S’. From &', we can get back §. Can the difference set S’ be further
coded? Well, since &’ is a set of positive integers (note that S is monotonically

increasing), we can apply the binary reduction on &’ to produce the reduction set
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R(S’). Because R(S’) and &’ contain the same information, the index set S can be

derived by decoding R(S’). So we will R(S’) to represent S. For example, if
S = {1,2,5,36,42) (5.2)

then we have

S = {1,1,3,31,6},

and

R(S") = {,,1,1111,10}.
The coding result of the index set {1,2,5,36,42} is {,,1,1111,10}. It is a very

compact representation of the indices.

Actually the concept of combining the differential coding and the binary reduction
is a fairly general concept and not specific to the wavelet decomposition domain. For
example, it can be applied to the Partition Priority Coding (PPC) [23], and one would

expect some possible improvement in the image coding results.

5.4.4 Outline of the Algorithm

With the differential coding and binary reduction, the index j of a significant wavelet
transform coefficient can be coded very efficiently. And we call the action of the
differential coding and binary reduction on wavelet transform coefficients Wavelet-
Difference-Reduction (in short WDR). We now formulate our WDR image compres-
sion algorithm using this notion of Wavelet-Difference-Reduction. We will use the
language “sorting pass” and “refinement pass” from [43].

After taking the discrete wavelet transform of an image, all wavelet transform
coefficients will be ordered from coarser scale to finer scale, exactly the same ordering
as in Figure 5.2. In an N scale decomposition, it will be LLy, HLy, LHy, HHy,
then HLy_1,LHy_1,HHN_1,---,HLy,LH,, and HH,. This order is based on the
hypothesis that more significant wavelet transform coefficients are expected to appear
in the coarser scale, and statistically this hypothesis is true in almost all the cases.
Also this is the natural order of wavelet transform coefficients in the context of signal
processing. Three ordered lists of wavelet transform coefficients are defined, LSC
(list of significant coefficients), LTP (a temporary list, for the significant coefficients
found in a given sorting pass round), and LIC (list of insignificant coefficients).
Initially both LSC and LTP are empty, and LIC contains all the wavelet transform
coefficients, with the order as shown in Figure 5.2. And the initial threshold T is
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chosen such that |x;| < 2T for all the wavelet transform coefficients x;, and for some
Jo, |%jo| = T. Output the initial threshold 7.

First we have a sorting pass. In the sorting pass, all significant coefficients in LIC
with respect to 7' will be moved out and put into LTP. Let S be the indices (in LIC)
of these significant coefficients. Output the reduction set R(S’) of the difference set
of §. Instead of using “,” as the end of message symbol to separate different elements
in R(S'), we will take the signs (either “4” or “—") of these significant coefficients as
the end of message symbol. For example, if § = {1,2,5,36,42} as in (5.2), and the
signs of these four significant coefficients are “+ — + 4+ —”, then the encoding output
R(S’) will be “+ — 141111 4 10—". Then update the indexing in LIC, for example,
if x3 is moved to LTP, then all coefficients after x5 in LIC will have their indices
subtracted by 1, and so on.

The sorting pass is followed by a refinement pass. In the refinement pass, an addi-
tional bit of precision of all the coefficients in LSC will be obtained. Or equivalently,
the width of the uncertainty interval of coefficients in LSC will be cut in half. Before
the refinement pass, the uncertainty interval of coefficients in LSC is [0, 27"). During
the refinement pass, those coefficients in LSC with magnitude falling in [0,7") will
have the refinement value “0”, and those in LSC with magnitude falling in [T, 27)
will have the refinement value “1”7. And these refinement values “0” or “1” will be
the output. For example, if the magnitude of a coefficient in LSC is known to be
in [32,64), then it will be decided at this stage whether it is in [32,48) or [48,64).
And a “0” symbol will indicate it is in the lower half [32,48), while a “1” symbol will
indicate it is in the upper half [48,64). Output all these refinement values “0” and
“1”7. Note that for the first round, there will be no output, since those significant
coefficients just found in the sorting pass are all in LTP, and LSC is still empty.

Then append LTP to the end of LSC, LSC = LSC U LTP. Reset LTP to the
empty set. And T is divided by 2. Another round begins with the sorting pass.

The adaptive arithmetic coding [57] is used on the resulting symbol stream in the
sorting pass and refinement pass for each round. When the given rate or distortion
metric is met, the encoding stops.

To make the above algorithm more clear, we will use an example to illustrate the
steps in the WDR algorithm. Only the symbol stream before adaptive arithmetic
coding is shown. A 3-scale wavelet transform of an 8 x 8 image is borrowed from [45].
The array of values is shown in Figure 5.3. The largest wavelet transform coefficient

magnitude is 63, and we will choose T'= 32 as the initial threshold.
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63 | -34 | 49 10 |7 13 -12 7

-31 | 23 14 -13 | 3 4 6 -1
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Figure 5.3 Example of 3-scale Wavelet Transform of an 8 x 8 Image.

In the first round, during the sorting pass, there are four significant coefficients,
63, —34,49, and 47, with the indices 1, 2, 5, and 36. So & = {1,2,5,36}. Now
apply the differential coding and binary reduction, we get R(S') = {,,1,1111}. The
sign of a significant coefficient will be followed by its reduced index, so the resulting
symbol stream will be “+ — 1 4+ 11114+”. There is no “0” or “1” preceding th first
“+7. which means its reduced index is nothing, then we can know its index difference

will be 1. Also for the first “—”

significant coefficient is 1. And for the second “47, taking the inverse of binary

, we can know the index difference for the second

reduction operation, it will produce 3 from the coded symbol “1”. Thus the index
difference will be 3. And so on. When updating the indices in LIC, 3 = —31, 24 = 23
will have the new indices 1 and 2, since 63 and —34 are all moved out. The wavelet
transform coefficients after 49 and before 47 will have their indices subtracted by 3,
those after 47 will have their indices subtracted by 4. Now LTP = {63, —34,49,47}.
Since LSC is empty for this round, there will be no output for refinement values.
And LSC = LSC U LTP = {63,—-34,49,47}, and we reset LTP to the empty set.
At T = 32, all four coefficients in LSC have their magnitudes in the interval [32, 64),



72

and we will take the center of this interval as their reconstruction values. Thus, the
reconstruction values of these four significant coefficients will be {48, —48,48,48}.
Then T is divided by 2, T'= 32/2 = 16. The second round begins.

In the second round, there are two significant coefficients, —31, and 23, with the
indices 1, and 2. Note that these are the updated indices. We have § = {1,2}, and
R(S") = {,,}. The symbol stream will be “—+7, with LTP = {-31,23}. Then
updating the indices in LIC, in this case, all indices are subtracted by 2. In the
refinement pass LSC = {63, —34,49,47}. The magnitudes of these four coefficients
are all in [32,64), and they will be refined to an additional bit of precision, i.e., either in
[32,48) or in [48,64). The uncertainty interval is [0, 32), and those magnitudes falling
in [0,16) will have the refinement values “0”, and those falling in [16, 32) will have the
refinement values “1”7. Since 63—32 = 31 > 16, the refinement value for 63 is 1; |—34—
(—32)| = 2 < 16, the refinement value for -34 is 0; 49 — 32 = 17 > 16, the refinement
value for 49 is 1; 47 — 32 = 15 < 16, the refinement value for 47 is 0. The symbol
stream will be “1010”. Now LSC = LSC U LTP = {63, —34,49,47,—31,23}, and
LTP is reset to empty. The reconstruction values of these six significant coefficients
at this stage will be {56,—40,56,40,—24,24}. And T = 16/2 = 8, another round
begins...

The encoding will stop when some target rate is met.

For this example, there will be at most six rounds. After the sixth round, the

resulting compressed bit stream will be lossless.

5.5 Comparisons of Three Algorithms

The main difference among EZW, SPC and WDR is the way how significant wavelet
transform coefficients are located. Both EZW and SPC are “zerotree” type schemes
using spatial orientation tree structures to implicitly locate significant wavelet trans-
form coefficients, while WDR is a direct approach to find the positions of these sig-
nificant coefficients based solely on index coding.

Except for the way to locate significant wavelet transform coefficients, and a minor
difference of the order of sorting passes and refinement passes, these three algorithms
are essentially using the same idea to encode (and consequently decode) images. They

can all be included in the following generic model, which consists of five steps:

1. Take the discrete wavelet transform of the original image.
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2. Order the wavelet transform coefficients from coarser scale to finer scale, as in

Figure 5.2. Set the initial threshold 7.

3. (Sorting Pass) Find the positions of significant coefficients with respect to T,

and move these significant coefficients out.

4. (Refinement Pass) Get the refinement values of all significant coefficients, except

those just found in the sorting pass of this round.

5. Divide T' by 2 and go to step 3.

The resulting symbol stream in step 3 and 4 will be further encoded by a lossless data
compression algorithm.

In the decoding operation, the bit stream will first be decoded by the correspond-
ing lossless data decompression algorithm to retrieve the symbol stream. Then the
decoded symbol, both during a sorting pass and a refinement pass, refines and reduces
the width of the uncertainty interval in which the true value of the coefficient may
occur. The reconstruction value of the coefficient can be anywhere in that uncertainty
interval. As suggested by Shapiro, we will simply use the center of the uncertainty
interval as the reconstruction value. And the last step is to take the inverse wavelet
transform to obtain the reconstructed image.

The above model provides a method of successive approximation of an image. It
has several remarkable advantages, as described by Shapiro. First, the bits in the bit
stream are generated in order of importance, yielding a fully embedded code. Second,
the encoder can terminate the encoding at any point thereby allowing a target rate
of target distortion metric to be met exactly. And the performance is achieved with
a technique that requires absolutely no training, no pre-stored tables or codebooks,

and requires no prior knowledge of the image source.

5.6 Applications of WDR Algorithm

The image compression software ICompress' is based on our algorithm Wavelet-
Difference-Reduction. ICompress has an input channel, an output channel, and a

control panel. The input channel supports lots of difference image formats, from the

"ICompress is a registered trademark of the Computational Mathematics Laboratory, Rice
University.
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lowest common denominator format pnm, raw, to the popular formats jpeg, gif, tiff,
and others. The compression ratio will be set in the control panel. It can be any
real number greater than or equal to 1. If the ratio is 1, then we will get the original
image. Also in the control panel, the compression and decompression CPU time will
be shown in the Info area. The decompressed image in tiff format will be sent to the
output channel. An illustration of [Compress is in Figure 5.4. In Figure 5.4, the input
file is lena.tiff, the 8 bits per pixel (bpp), 512 x 512 grayscale “Lena” image in tiff for-
mat. The compression ratio is set to 40:1. The compression and decompression CPU
times are 4.0 seconds and 3.5 seconds, respectively. The original “Lena” image and
the decompressed image with ratio 40:1 are shown in Display 1 and 2, respectively.
The Wavelet-Difference-Reduction algorithm can be applied to various types of
image data, such as still images, medical images, seismic waves, synthetic aperture
radar images, FBI fingerprints, etc. In this section we will use ICompress to code
different types of images and compare its performance with other well-known image

coding algorithms.

5.6.1 Still Images

Experiments have been done on all the 8 bits per pixel (bpp), grayscale still images,
available from ftp://links.uwaterloo.ca:/pub/BragZone/, which include “Barbara”,
“Goldhill”, “Lena” and others. And we used the biorthogonal Coifman wavelet system
of degree 3 (BCW-3) with six scales. The symmetry of biorthogonal Coifman wavelet
systems allows the “reflection” extension at the images edges. For our purpose, the

compression performance is measured by the peak signal to noise ratio

2 2
PSNR = 10log,, (M5—S5E) dB,

where MSE is the mean square error between the original image and the reconstructed
one. Some other criterion might have been more preferable. However, to make a direct
comparison with other coders, PSNR is chosen. And the bit rate is calculated from
the actual size of the compressed file.

Our experimental results show that the coding performance of current implemen-
tation of this new WDR algorithm is between EZW and SPC, which all are much
better than JPEG [54]. Here we include the coding results for the 8 bpp, 512 x 512
grayscale “Lena” image. The PSNR versus bit rate is plotted in Figure 5.5. Some
reconstructed images are shown in Figure 5.6, 5.7, 5.8, and 5.9. In Figure 5.5, the



75

Figure 5.4 Illustration of [Compress
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top curve is Said and Pearlman’s SPC algorithm. And our new algorithm is about
0.3 dB higher in PSNR than Shapiro’s EZW algorithm, 0.6 dB lower in PSNR than
Said and Pearlman’s SPC algorithm. However, this WDR algorithm is much simpler
than both EZW and SPC, hence its encoding and decoding will be faster than both
EZW and SPC.

5.6.2 Medical Images

In the automatic detection of microcalcification clusters in digitized mammograms,
we compare the performce on the compressed mammograms using the Wavelet-
Difference-Reduction algorithm with the performance on the original mammogram
images. The surprising result is the at a compression ratio 10:1, the detection perfor-
mance is improved for small false positive rates, compared with the original. Thus,
the Wavelet-Difference-Reduction algorithm not only provides an efficient storage for
the mammograms images (which are extremely large in size), but also improves the
automatic detection of microcalcification clusters. The reason for the improvement
on the compressed data is that at low compression ratios, the compression process is
similar to denoising. Lots of the information discarded in the compressed data is the
noise. Thus at low compression ratios, the mammogram images quality is improved

for the detection of microcalcification clusters. For more details, we refer to our paper

[36].

5.6.3 Synthetic Aperture Radar Images

Synthetic aperture radar (SAR) is an active coherent all-weather imaging system that
operates in the microwave region of the spectrum. This imagery is well suited to the
task of remote ground mapping in many applications, such as surveillance, oceanog-
raphy, and agriculture. Real-time transmission of SAR data is of great importance for
both time critical applications such as military search and destroy missions as well as
in scientific survey applications. Furthermore, since post processing of the collected
data in either application involves search, classification and tracking of targets, the
requirements for a “good” compression algorithm is typically very different from that
of lossy image compression algorithms developed for compressing still-images. The
definition of targets are application dependent and could be military vehicles, trees

in the rain forest, oil spills etc.
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Figure 5.5 Coding Performance of the New Algorithm
on “Lena”, Compared with SPC and EZW

If real time transmission of SAR imagery over a TI-carrier (1.544Mb/s) is re-
quired, we are faced with having to compress SAR images at a rate of 73:1 (112Mb/s
— 1.544Mb/s). While a lot of research on lossy still-image compression has taken
place over the years, not much attention has been paid to lossy compression of sensor
data such as SAR. The main focus of compression of sensor data has been towards
lossless compression techniques which at most can achieve a compression of about
2:1 [42], [33]. By applying standard lossy still-image compression algorithms one
can achieve good results for automatic target recognition (ATR) at a compression of
16:1 [44]. By using the Wavelet-Difference-Reduction algorithm on the SAR image
data which are preprocessed by a technique known as the polarimetric whitening filer
(PWF) [37], we found that visually the image quality is still well preserved at the

ratio 80:1. The experimental results and more details can be found in our paper [47].

5.7 Image Processing in the Compressed Wavelet Domain

The Wavelet-Difference-Reduction algorithm locates the significant wavelet transform

coefficients directly and has a clear geometric structure. In the compressed wavelet



Figure 5.6 Original 8 bpp, 512 x 512, Grayscale “Lena”

Figure 5.7 8:1 Compression, PSNR = 39.84 dB
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Figure 5.8 16:1 Compression, PSNR = 36.59 dB

Figure 5.9 32:1 Compression, PSNR = 33.44 dB
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domain, we know the exact locations of significant coefficients, along with their pro-
ceeding significant bits values. With such a property, we may process the compressed

data directly without applying the decompression first.

5.7.1 Denoising

In his celebrated paper [13],D. Donoho showed that the soft thresholding method
is an optimal procedure to recover data from additive Gaussian noise. His method
consists of three steps. First take the DW'T of the noisy data. Then apply the soft
thresholding on the wavelet coefficients. The soft thresholding acts like a shrinkage
on real numbers,

r—t ifz>1

ST(x) = 0 if—t<ax<t ,

r+t fz<—t
where ¢ > 0 is the chosen threshold. The last step is to take the inverse DWT on the
resulting numbers.

It is clear that the soft thresholding method only involves the magnitudes of the
wavelet transform coefficients. Thus we may denoise the image data in the compressed
wavelet domain. In the Wavelet-Difference-Reduction algorithm, the magnitudes of
the wavelet transform coefficients are compared with a threshold 7" and the indices of
those significant coefficients will be coded by the differential coding and the binary
reduction. The magnitudes of those insignificant coefficients will be compared with
the next threshold 7'/2 in the next cycle. Assume a target rate is met exactly at some
point, the encoding job is terminated, and the final threshold is 7. If T} > ¢, where ¢
is the threshold chosen for denoising, then we may simply subtract the magnitudes of
significant coefficients by ¢, and the denoising is done. If T; < ¢, since in the Wavelet-
Difference-Reduction algorithm, the consecutive thresholds in the consecutive cycles
are different by a factor of 2, there muse exist some cycle with the threshold 7., such
that T. < t < 2T.. To carry out the soft thresholding method in the compressed
domain, we just set all magnitudes of those coefficients which are found significant
at this cycle (with the threshold T.) or after this cycle to zero, and subtract by ¢ all

magnitudes of those coefficients which are found significant before this cycle.



81

5.7.2 Speckle Reduction

H. Guo et al. [20] found out that both the soft thresholding and the hard threshold
methods are computational efficient and can significantly reduce the speckle while
preserving the resolution of the synthetic aperture radar (SAR) images. The hard
thresholding behaves like an ideal stop band,

r fz>torz < —t
0 if—t<ae<t

HT () = {

where ¢ > 0 is the chosen threshold. The hard thresholding method doesn’t require
a subtraction operation. Thus it is more easier to be implemented in the compressed
wavelet domain. Using the same argument as for the denoising, we may reduce the

speckle on the compressed SAR data directly.

5.7.3 Zooming

When the image data size is very large, such as the medical images, seismic waves,
image processing will be remarkable slow. Very oftenly we are interested in only
a small region of the whole image. Thus it is desirable that we can zoom in the
interesting region as quick as possible. Here we propose a novel method to zoom
image data in the compressed domain. Assume the image data is stored in a com-
pressed form by the Wavelet-Difference-Reduction algorithm. Since it is an embedded
coding algorithm, at the beginning of the bit stream, the embedded code contains
all lower rate (here the rate is the bit rate, or the number of bits per pixel) codes.
Decompressing these beginning bit stream will give us a reconstruction image at a
very low resolution with a relatively small data size. Then it becomes much easier
to pick up our interested region in this decompressed image, which has a small data
size. After that, as the decoding continues, more and more fine detail in the order of
importance will be sent out to produce reconstruction images with higher and higher
resolutions. Since we already know the location of our interested region, we also
know the locations of significant wavelet transform coefficients, by the nature of the
Wavelet-Difference-Reduction algorithm, we can simply ignore those bit stream not
related to our interested region and get the reconstruction image of the interested

region in a fast fashion.
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5.8 Image Coding Evaluation of BCWs

In Chapter 3 we have learned biorthogonal Coifman wavelet systems, their construc-
tion and properties. Now it is the time to evaluate their transform coding perfor-
mance. We will show that biorthogonal Coifman wavelet systems are very suited
to image transform coding. Here for simplicity, we choose biorthogonal Coifman
wavelet system of degree 3 (BCW-3) and compare it with the most widely used
Cohen-Daubechies-Feauveau 9/7-tap filters (CDF-97) [7]. Some image-independent
measures as well as some image-dependent measures will be applied to systematically

compare these wavelet systems for image transform coding.

5.8.1 Image-Independent Measures

In [53], several image-independent measures based on some properties of the dual
filters have been recommended to evaluate wavelet filters for image transform coding.

We list the comparison results using these measures in the Table 5.1.

Regularity

It has been well known that the regularity of wavelets is only partially related to the
quality of the reconstructed image via wavelet transform coding [51, 53, 41]. However,
for short wavelet filters, the regularity is still closely related to the compression per-
formance [41]. We use the algorithm by Rioul [40] to estimate the Holder regularity
of the wavelet filters. Usually, the smoothness of the synthesis scaling function q;(:zj)
is more important than that of the analysis scaling function ¢(x) in determining the
quality of a reconstructed image, and the latter is more relevant to the energy com-
paction capability than the former for those smooth images. Therefore, there is a
tradeoff between these two factors when choosing short wavelet filters. The compari-
son results in the Table 5.1 indicate that the BCW-3 and CDF-97 are about the same

in terms of the distribution of regularity.

Shift-Variant Impulse Response

The impulse response of an L-level combined subband analysis/synthesis system is

defined as [53]

F(hs by Linyno) = Ry, AWL(n) Dy, p48(n = 10) 35, (5.3)
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Table 5.1 Comparison Using Image-Independent Measures
Regularity | MPSR | APSR | MFOSS | AFOSS
hn i | b
CDF-97 || 1.00 | 1.70 | 11.22 | 13.93 | 0.0411 | 0.0271
BCW-3 || 0.85 | 2.00 | 10.67 | 15.05 | 0.0379 | 0.0263

where h and h are the dual lowpass filters, 6(n — ng) is an impulse at n = ng, D
and R are the decomposition and the reconstruction operators, respectively, and the

wavelet domain window function Wi (n) is defined as

1, ifnéeN,

0, otherwise,

Wr(n) = { (5.4)
where N is the set of indices for the subband signal with the lowest resolution. Since
the biorthogonal DWT is shift-variant, the impulse response defined above also de-
pends on the location of the impulse. Unlike [53], we here use both the minimum and
the average peak-to-sidelobe ratio (MPSR and APSR) in dB among the 2¥ possible
impulse responses in an L-level decomposition/reconstruction to characterize both
the worst-case and the average oscillatory behavior, or ringing effect, in the system
response, which usually results in visually annoying artifacts in the reconstructed
image. The higher MPSR and APSR correspond to the weaker ringing behavior.

From the Table 5.1 we can see that the APSR of the BCW-3 is better than CDF-
97, while the MPSR of the latter is better than the former.

Shift-Variant Step Response

Since the ringing artifact often occurs near the regions of edges in the reconstructed
image, it can also be characterized by both the maximum and the average fractional
overshoot of the second sidelobe (MFOSS and AFOSS) among the 2L possible step
responses of the combined analysis/synthesis system, which are closely related to the
worst-case and the average ringing effect, respectively. A strong overshoot in the step
response will lead to significant ringing in the reconstructed image [53].

The comparison results in the Table 5.1 indicate that the BCW-3 has lower AFOSS
than the CDF-97, and the BCW-3 is also better than CDF-97 in terms of the MFOSS.
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From the above comparison of the impulse responses and the step responses for
the four FBs, we can expect that the BCW-3 will exhibit weaker ringing artifact than
the CDF-97.

5.8.2 Image-Dependent Measures

The energy compaction is one of the most important metrics in the evaluation of
filters used in transform coding schemes. However, to our knowledge, there is no
measure for energy compaction that can be used independent of images. We choose
six test images: Lena (512 x 512), Peppers (512 x 512), Boats (576 x 720), Building (a
synthetic aperture radar image, 800 x 800), Fingerprint-1 (768 x 768) and Fingerprint-
2 (480 x 384), which are all 256-gray-level images.

Weighted Subband Coding Gain

For a given image = with size N and a subband decomposition scheme, the energy

compaction property of a FB can be characterized by the weighted SBC gain [25]

K-1 N —Ni /N
GSBC = 0950'3, H ((F) wkaz,k) 5 (55)
k=0 k

where (. is a constant related to the image =, K is the number of subbands, Ny
is the size of the kth subband image, o2 and O'z,k are the variances of the image x
and the subband image xj, respectively, and wy 1s the weight for the kth subband,
which takes into consideration the different energy contribution from different sub-
bands due to the relaxation of the orthogonality. We apply the method in [58] to
compute these filter-related weights {w;}, and here we also propose a new formula
that generalizes the simple cases in [58]. Assume that the channel of the synthesis
FB for the kth subband image consists of M filters in the horizontal direction, in
the order of gp1,9n2, -, gnm, and M filters in the vertical direction, in the order of
Gu1r9v2s - gum (Here we consider only the two-dimensional separable FBs). The

weight wy, is given by

o= 2 (Sl (Satok) (56)
where

Gr(z) = gn(n)z"" = 1:[ Ghi (ZQM_i) ) (5.7)
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Go(2) =D gu(n)z™" = 1:[ Glyi (ZQM_i) . (5.8)

From (5.5) one can see that the SBC gain depends strongly on the image content.
It is also partly theoretical, because the definition of the SBC gain includes some
assumptions that are not always valid in practice. However, due to the lack of better
metrics to measure the energy compaction capability, the SBC gain is still widely
used.

The experimental results are given in Table 5.2. We find that the SBC gains of
the BCW-3 are slightly better than those of the CDF-97 for the first four images,
while for the two fingerprint images the SBC gains of the BCW-3 are much better.

Table 5.2 Comparison Using the Weighted SBC Gain
H H Lena ‘ Peppers ‘ Boats ‘ Building ‘ Fingerprint-1 ‘ Fingerprint-2 H
CDF-97 || 49.29 | 32.12 | 37.96 28.36 77.40 46.60
BCW-3 | 50.34 | 32.79 | 40.94 28.74 88.72 53.89

5.9 Conclusions

In this chapter we have presented the Wavelet-Difference-Reduction algorithm. It
utilizes the discrete wavelet transform which removes the spatial and spectral redun-
dancies of digital images to a large extend. The combination of the differential coding
and the binary reduction represents the positions of significant wavelet transform co-
efficients very efficiently. This Wavelet-Difference-Reduction algorithm provides a
successive approximation of image sources and facilitates progressive image transmis-
sion. It requires no training of any kind or prior knowledge of image sources. Since
this algorithm doesn’t depend on any special statistical model, it can be easily ex-
tended to 3-D or even higher image data compression. Also due to its clear geometric
structure we may perform image processing directly in the compressed wavelet do-
main. Considering the large data size nowadays, this may enable us to reach our
goal in a fast and efficient way. And with its nice compression performance, fast en-
coding/decoding speed, this new algorithm looks quite promising in image and vedio

processing.
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Chapter 6

Summary

Biorthogonal Coifman wavelet systems have very nice properties both in the theoreti-
cal sense and the application sense. The vanishing moments conditions have played an
important role in such systems. These conditions not only give growing smoothness
of wavelet systems, but also provide fast wavelet sampling approximation. Another
attractive feature of biorthogonal Coifman wavelet systems is that all the coefficients
are dyadic rational. Thus we can have a very fast multiplication-free discrete wavelet

transform implemented on digital computers.
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