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The Mathematical Theory and Applications ofBiorthogonal Coifman Wavelet SystemsJun TianAbstractIn this thesis, we present a theoretical study of biorthogonal Coifman wavelet sys-tems, a family of biorthogonal wavelet systems with vanishing moments equally dis-tributed between scaling functions and wavelet functions. One key property of thesewavelet systems is that they provide nice wavelet sampling approximation with ex-ponential decay. Moreover they are compactly supported, symmetric, have growingsmoothness with large degrees, and converge to the sinc wavelet system. Using atime domain design method, the exact formulas of the coe�cients of biorthogonalCoifman wavelet systems of all degrees are obtained. An attractive feature behind itis that all the coe�cients are dyadic rational, which means that we can implement avery fast multiplication-free discrete wavelet transform, which consists of only addi-tion and shift operations, on digital computers. The transform coding performanceof biorthogonal Coifman wavelet systems is quite comparable to other widely usedwavelet systems. The orthogonal counterparts, orthogonal Coifman wavelet systems,are also discussed in this thesis.In addition we develop a new wavelet-based embedded image coding algorithm,the Wavelet-Di�erence-Reduction algorithm. Unlike zerotree type schemes which usespatial orientation tree structures to implicitly locate the signi�cant wavelet trans-form coe�cients, this new algorithm is a direct approach to �nd the positions ofsigni�cant coe�cients. It combines the discrete wavelet transform, di�erential cod-ing, binary reduction, ordered bit plane transmission, and adaptive arithmetic coding.The encoding can be stopped at any point, which allows a target rate or distortionmetric to be met exactly; the decoder can also terminate the decoding at any point,and produce a corresponding reconstruction image. Our algorithm provides a fullyembedded code to successively approximate the original image source; thus it's wellsuited for progressive image transmission. It is very simple in its form (which will



iiimake the encoding and decoding very fast), and has a clear geometric structure, whichenables us to process the image data in the compressed wavelet domain. The imagecoding results of it are quite competitive with almost all previous reported imagecompression algorithms on standard test images.



AcknowledgmentsI would like to take this opportunity to express my high appreciation to Ronny Wells,my academic advisor. His broad knowledge, profound insight, long-lasting enthusiasmhas always guided me into the right direction to do the right job. Also under hisinstruction, my English has been improved a lot. I am really enjoying working withhim.John C. Polking was my �rst advisor at Rice University. He helped me in everyway to get started for graduate study. My second advisor was Bob Hardt. WheneverI had a question, he was always there and ready to help me out. I learned geometricanalysis from him, harmonic analysis from Stephen Semmes, and partial di�erentialequations from Leon Simon. All these have provided a solid foundation for what I amworking on now. I would like to thank all the professors at mathematics departmentof Rice University. Their lectures have bene�ted graduate students a lot and theyhave created such a nice academic environment to us to learn mathematics. A specialthanks to Sharon F. McDonough and Maxine Turner. They just make our life at Riceso smooth and comfortable.Most of the work in the thesis was done in the Computational MathematicsLaboratory, Rice University. It was there that Ronny led me into the fantastic worldof wavelet analysis. Xiaodong Zhou was my \big brother" in the lab. He alwaysshared his creative ideas with me and we had a very good time together. I learneddigital signal processing from Sid Burrus. He has given me lots of feedback to keepmoving forward. From Houston to Bremen, Markus Lang not only gave me numer-ous assistance in research, it was also a great fun to chat with him. Haitao Guoprovided his nice compression program to me. Without his help, the discovery of theWavelet-Di�erence-Reduction algorithm would not have been possible. Richard A.Tapia explained the Newton-Kantorovich Theorem to me. Dong Wei helped me witha complete transform coding evaluation of biorthogonal Coifman wavelet systems.Also I would like to thank Roland Glowinski, David W. Scott, Richard G. Baraniuk,Jan E. Odegard, and other members at the lab.



vI spent about half a year at the Center for Medical Visualization and DiagnosticSystems, Germany. The visit was both fruitful and colorful. I would like to thankHeinz-Otto Peitgen, Carl Evertsz, Hartmut Juergens, Aska Lo�roy, Thomas Netsch,and all others there for their hospitality.Meanwhile I want to thank Howard L. Resniko� and Peter N. Heller at Aware, Inc.They have broadened my eyes and the discussions with them have been very helpful.Amir Said at State University of Campinas explained their codetree algorithms tome in details. I have gained much bene�t from his joint paper with William A.Pearlman at Rensselaer Polytechnic Institute and the paper by Jerome M. Shapiroat Aware, Inc. I would like to take this opportunity to thank all these three authors.Also thanks to Alistair Mo�at of University of Melbourne, Mladen V. Wickerhauser ofWashington University, Xuguang Yang of University of Illinois at Urbana-Champaign,Lucas Monzon of Yale University for their valuable help.And thanks to all the members in my thesis committee. Their comments haveenhanced the thesis considerably.A �nal thanks goes to all the people caring about me and helping me out in thisor that way.



ContentsAbstract iiAcknowledgments ivList of Illustrations viiiList of Tables ix1 Introduction 12 General Theory of Wavelet Analysis 42.1 The Advent of the Wavelet Transform : : : : : : : : : : : : : : : : : 42.2 Orthogonal Wavelet Systems : : : : : : : : : : : : : : : : : : : : : : : 52.2.1 The Multiresolution Analysis : : : : : : : : : : : : : : : : : : 72.2.2 Daubechies' Work : : : : : : : : : : : : : : : : : : : : : : : : : 92.2.3 Orthonormality : : : : : : : : : : : : : : : : : : : : : : : : : : 112.2.4 Smoothness : : : : : : : : : : : : : : : : : : : : : : : : : : : : 132.3 The Mallat Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : 132.4 Biorthogonal Wavelet Systems : : : : : : : : : : : : : : : : : : : : : : 143 Biorthogonal Coifman Wavelet Systems 173.1 A Wavelet Approximation Theorem : : : : : : : : : : : : : : : : : : : 173.2 De�nition of Biorthogonal Coifman Wavelet Systems : : : : : : : : : 273.3 Construction of BCWs : : : : : : : : : : : : : : : : : : : : : : : : : : 343.4 Properties of BCWs : : : : : : : : : : : : : : : : : : : : : : : : : : : 383.4.1 Approximation : : : : : : : : : : : : : : : : : : : : : : : : : : 383.4.2 Compact Support : : : : : : : : : : : : : : : : : : : : : : : : : 403.4.3 Symmetry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 413.4.4 Smoothness : : : : : : : : : : : : : : : : : : : : : : : : : : : : 423.4.5 Unconditional Bases : : : : : : : : : : : : : : : : : : : : : : : 433.4.6 Multiplication-Free Discrete Wavelet Transform : : : : : : : : 453.4.7 Convergence to Sinc Wavelet System : : : : : : : : : : : : : : 49



vii3.5 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 534 Orthogonal Coifman Wavelet Systems 544.1 De�ntion of Orthogonal Coifman Wavelet Systems : : : : : : : : : : : 544.2 Vanishing Moments and Wavelet Approximation : : : : : : : : : : : : 554.3 Existence and Construction : : : : : : : : : : : : : : : : : : : : : : : 574.4 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 615 Image Coding 625.1 Some Background : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 635.2 Shapiro's Embedded Zerotree Wavelet Algorithm : : : : : : : : : : : 645.3 Said and Pearlman's Codetree Algorithm : : : : : : : : : : : : : : : : 655.4 Wavelet-Di�erence-Reduction Algorithm : : : : : : : : : : : : : : : : 675.4.1 Di�erential Coding : : : : : : : : : : : : : : : : : : : : : : : : 675.4.2 Binary Reduction : : : : : : : : : : : : : : : : : : : : : : : : : 675.4.3 Coding the Signi�cant Maps : : : : : : : : : : : : : : : : : : : 685.4.4 Outline of the Algorithm : : : : : : : : : : : : : : : : : : : : : 695.5 Comparisons of Three Algorithms : : : : : : : : : : : : : : : : : : : : 725.6 Applications of WDR Algorithm : : : : : : : : : : : : : : : : : : : : : 735.6.1 Still Images : : : : : : : : : : : : : : : : : : : : : : : : : : : : 745.6.2 Medical Images : : : : : : : : : : : : : : : : : : : : : : : : : : 765.6.3 Synthetic Aperture Radar Images : : : : : : : : : : : : : : : : 765.7 Image Processing in the Compressed Wavelet Domain : : : : : : : : : 775.7.1 Denoising : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 805.7.2 Speckle Reduction : : : : : : : : : : : : : : : : : : : : : : : : 815.7.3 Zooming : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 815.8 Image Coding Evaluation of BCWs : : : : : : : : : : : : : : : : : : : 825.8.1 Image-Independent Measures : : : : : : : : : : : : : : : : : : 825.8.2 Image-Dependent Measures : : : : : : : : : : : : : : : : : : : 845.9 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 856 Summary 86Bibliography 87



Illustrations2.1 The Haar Wavelet Function : : : : : : : : : : : : : : : : : : : : : : : 62.2 The Haar Scaling Function : : : : : : : : : : : : : : : : : : : : : : : : 73.1 The Biorthogonal Coifman Wavelet System of Degree 2 : : : : : : : : 393.2 The Biorthogonal Coifman Wavelet System of Degree 3 : : : : : : : : 393.3 The Biorthogonal Coifman Wavelet System of Degree 4 : : : : : : : : 414.1 Orthogonal Coifman Wavelet Systems of Degree 1 an 2 : : : : : : : : 604.2 Orthogonal Coifman Wavelet Systems of Degree 3 and 4 : : : : : : : 605.1 Parent-Child Dependencies in the Wavelet Decomposition Domainwith 3 Sales. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 655.2 Scanning Order of the Wavelet Transform Coe�cients with 3 Scales. : 665.3 Example of 3-scale Wavelet Transform of an 8� 8 Image. : : : : : : : 715.4 Illustration of ICompress : : : : : : : : : : : : : : : : : : : : : : : : : 755.5 Coding Performance of the New Algorithm on \Lena", Comparedwith SPC and EZW : : : : : : : : : : : : : : : : : : : : : : : : : : : 775.6 Original 8 bpp, 512 � 512, Grayscale \Lena" : : : : : : : : : : : : : : 785.7 8:1 Compression, PSNR = 39.84 dB : : : : : : : : : : : : : : : : : : : 785.8 16:1 Compression, PSNR = 36.59 dB : : : : : : : : : : : : : : : : : : 795.9 32:1 Compression, PSNR = 33.44 dB : : : : : : : : : : : : : : : : : : 79



Tables3.1 The Coe�cients of Biorthogonal Coifman Wavelet Systems : : : : : : 403.2 Sobolev Smoothness of Biorthogonal Coifman Wavelet Systems : : : : 445.1 Comparison Using Image-Independent Measures : : : : : : : : : : : : 835.2 Comparison Using the Weighted SBC Gain : : : : : : : : : : : : : : : 85



1Chapter 1IntroductionThe theory of wavelet analysis has grown explosively in the last decade. The termi-nology \wavelet" was �rst introduced, in the context of a mathematical transform,in 1984 by A. Grossmann and J. Morlet [19]. In 1988, I. Daubechies, in her cele-brated paper [8], introduced a class of compactly supported orthogonal wavelet sys-tems in general, as well as a family with growing smoothness for large support, theDaubechies wavelet systems. In 1989, S. Mallat [32] presented the theory of mul-tiresolution analysis and the Mallat algorithm. The spline family was introduced andstudied by G. Battle [2], P. G. Lemari�e [30], and C. K. Chui [4]. The necessary andsu�cient conditions for an orthogonal wavelet system were given by A. Cohen [6] andW. Lawton [29]. Except for the Haar wavelet system, orthogonal wavelet systemscan't be symmetric, though symmetry is highly desired, for example, in the applica-tions in signal processing, where symmetry corresponds to linear phase. To obtainsymmetry and keep the property of perfect reconstruction, A. Cohen, I. Daubechies,and J.-C. Feauveau [7] replaced the orthogonality condition with biorthogonality andthus established the theory of biorthogonal wavelet systems. At the same time, lotsof pioneer work has been done by many scientists from mathematics, physics andengineering. For more details of wavelet theory, we refer to [5], [9], [35] and [39].Along with the rapid development of its theoretical aspects, wavelet analysis im-mediately found its application in mathematicalmodeling, neural networks, numericalanalysis, and signal processing. Meanwhile, it is still keeping spreading its in
uencein other untouched areas. Since Fourier analysis has played a big role in science, itwill not be a surprise that wavelet analysis will be on the stage of scienti�c researchand applications for a long time, and will give us a better understanding of the worldwe are living.In this thesis, we will focus on biorthogonal Coifman wavelet systems, a family ofbiorthogonal wavelet systems with very nice properties both in the theoretical senseand application sense. The original idea goes back to R. Coifman of Yale University.In the spring of 1989, he suggested that it might be worthwhile to construct orthogo-



2nal wavelet systems with vanishing moments not only for the wavelet functions (whichis the hypothesis posed on the Daubechies wavelet systems), but also for the scalingfunctions. This turned out to be a big success. One key property of these orthogonalwavelet systems with vanishing moments equally distributed between scaling func-tions and wavelet functions (which are called orthogonal Coifman wavelet systems)is that they have very nice approximation properties with exponential decay. Thisresult was proved by us in 1993 and it is a natural extension of the result of R. O.Wells, Jr. and X. Zhou [56]. In 1994, we introduced biorthogonal Coifman waveletsystems, the biorthogonal counterparts of orthogonal Coifman wavelet systems. Thesebiorthogonal Coifman wavelet systems also have fast approximation properties withexponential decay. Moreover they are symmetric, compactly supported, have growingsmoothness, and converge to the sinc wavelet system. Another attractive feature ofbiorthogonal Coifman wavelet systems is that all the scaling vectors are dyadic ratio-nal, which means we can implement a multiplication-free discrete wavelet transform.In 1995, D. Wei et al. [55] did the coding performance evaluation of biorthogonalCoifman wavelet systems. It turns out that biorthogonal Coifman wavelet systemsare very useful for image transform coding and seem to be quite comparable to thewavelet systems used in the state-of-the-art compression systems.Perhaps the biggest success of wavelet applications has been claimed in signalprocessing, in particular, image coding. With good localization properties in boththe spatial domain and the frequency domain, the wavelet transform can handle non-stationary signals pretty well. Current research on wavelet based image coding [1],[12], [31], [45], and [52], etc, has shown the high promise of this relatively new yetalmost mature technology.In the second part of the thesis, we propose a new image coding method. Unlikezerotree type schemes, such as J. Shapiro's embedded zerotree wavelet algorithm [45],and A. Said and W. A. Pearlman's codetree algorithm [43], all use spatial orientationtree structures to implicitly locate the signi�cant wavelet transform coe�cients, thisnew algorithm is a direct approach to �nd the positions of signi�cant coe�cients. Itcombines the discrete wavelet transform, di�erential coding, binary reduction, orderedbit plane transmission, and adaptive arithmetic coding. The encoding can be stoppedat any point, which allows a target rate or distortion metric to be met exactly. The bitsin the bit stream are generated in the order of importance, yielding a fully embeddedcode to successively approximate the original image source; thus it's well suited forprogressive image transmission. The decoder can also terminate the decoding at any



3point, and produce a lower (bit) rate reconstruction image. Our algorithm is verysimple in its form (which will make the encoding and decoding very fast), requires notraining of any kind or prior knowledge of image sources, and has a clear geometricstructure which enables us to process the image data in the compressed waveletdomain. The image coding results are quite competitive with almost all previousreported image compression algorithms (including [45] and [43]) on standard testimages.This thesis is organized as follows. In Chapter 2 we gives an overview of thegeneral theory of wavelet analysis. This provides the underneath background wherebiorthogonal Coifman wavelet systems reside in and also it is an attempt to makethe thesis self-contained. Chapter 3 studies biorthogonal Coifman wavelet systems.The de�nition, construction, and properties will be be discussed in this chapter. Theexistence and construction of orthogonal Coifman wavelet systems will be studiedin Chapter 4. The image coding algorithm, the Wavelet-Di�erence-Reduction algo-rithm, is presented in Chapter 5. We will compare its coding performance with otheralgorithms and evaluate it in various applications. We conclude the thesis in Chapter6. Some of the work in the thesis was announced and developed in [48], [38], [55],[50], and [49].



4Chapter 2General Theory of Wavelet AnalysisThe �rst orthogonal wavelet system, the Haar wavelet system, was constructed byA. Haar [21] in 1910. The Haar wavelet system consists of piecewise constant functionsand provides an orthonormal bases of L2(R). Seventy years later, A. Grossmann andJ. Morlet introduced the notion \wavelet transform" [19] in 1984. A big breakthroughof wavelet analysis was brought by I. Daubechies in 1988. In her classical paper [8],she introduced a class of compactly supported orthogonal wavelet systems in gen-eral, as wells as a family with growing smoothness for large support, the Daubechieswavelet systems. Her work immediately stimulated a rapid development in the theoryand applications of wavelet analysis. In 1989, S. Mallat presented the theory of mul-tiresolution analysis [32]. With the multiresolution analysis, we can now constructthe wavelet system with desired property. The discrete wavelet transform can be com-puted by the Mallat algorithm [32]. Usually the wavelet system constitutes a frameof L2(R). To obtain an orthogonal system, it has to satisfy the orthogonality condi-tions given by A. Cohen [6] and W. Lawton [29]. Later A. Cohen, I. Daubechies, andJ.-C. Feauveau [7] established the theory of biorthogonal wavelet systems. The mainadvantage of biorthogonal wavelet systems over orthogonal ones is that biorthogonalsystems can be symmetric, while orthogonal systems can't except the Haar system.On the other hand, orthogonal systems preserve the L2 norm, biorthogonal systemsdon't. So there are tradeo�s between using biorthogonal systems and using orthogonalsystems, depending on the speci�c applications.In the chapter, we will go through some basic theory of wavelet analysis. For moredetails we refer to the original papers and [5], [9], [35], and [39].2.1 The Advent of the Wavelet TransformThe wavelet transform was �rst introduced by A. Grossmann and J. Morlet [19] in1984. It is a tool that cuts up data, functions or operators into di�erent frequencycomponents, and then studies each component with a resolution matched to its scale.



5Similar to the Fourier transform, there are continuous wavelet transform (CWT) anddiscrete wavelet transform (DWT).De�nition 2.1 The continuous wavelet transform (CWT) of a functionf(x) 2 L2(R) with respect to  (x) 2 L2(R) isCWT (f)(a; b) = jaj1=2 Z 1�1 f(x) (a(x� b)) dx ;where a; b 2 R; a 6= 0.De�nition 2.2 The discrete wavelet transform (DWT) of a functionf(x) 2 L2(R) with respect to  (x) 2 L2(R) isDWT (f)(j; k) = ja0jj=2 Z 1�1 f(x) (a0jx� kb0) dx ;where a0; b0 2 R; a0 6= 0; j; k 2 Z.For the discrete wavelet transform, a0 and b0 are usually set to be 2 and 1. Insuch a case, the DWT becomesDWT (f)(j; k) = 2j=2 Z 1�1 f(x) (2jx� k) dx :2.2 Orthogonal Wavelet SystemsThe Haar wavelet function is a piecewise constant function (see Figure 2.1) Haar(x) = 8>><>>: 1; 0 � x < 12 ;�1; 12 � x < 1 ;0; otherwise :The family of functions  Haarj;k(x), Haarj;k(x) = 2j=2 Haar(2jx� k) = 8>><>>: 1; k2j � x < k+1=22j ;�1; k+1=22j � x < k+12j ;0; otherwise ;generated from  Haar(x) by the operation of dilations and translations, constitute anorthonormal basis of L2(R), where the expansion coe�cients are exactly the discrete
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Figure 2.1 The Haar Wavelet Functionwavelet transform with respect to  Haar(x). A critical insight is to look at anotherpiecewise constan function, the so-called Haar scaling function (see Figure 2.2)�Haar(x) = 8<: 1; 0 � x < 1 ;0; otherwise :The linear subspaces Vj spanned by f�Haarj;k; k 2 Zg, where�Haarj;k(x) = 2j=2�Haar(2jx� k) = 8<: 1; k2j � x < k+12j ;0; otherwise ;are a sequence of nested subspaces of L2(R),� � � � V�2 � V�1 � V0 � V1 � V2 � � � ;and their union is a dense subset of L2(R),[j2ZVj = L2(R) :If Wj are the linear subspace spanned by f Haarj;k; k 2 Zg, the fact is that Wj is theorthogonal complement of Vj in Vj+1. Thus it follows thatL2(R) = Vj0 � Wj0 �Wj0+1 � Wj0+2 � � � � ;
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Figure 2.2 The Haar Scaling Functionwhere j0 is some integer. So the collection of functions f�Haarj0;k; k 2 Zg andf Haarj;k; k 2 Zg; j 2 Z; j � j0; is also an orthonormal basis of L2(R), and the ex-pansion coe�cients are exactly the discrete wavelet transform with respect to �Haarand  Haar.The Haar wavelet system explained above illustrates the core idea of the multires-olution analysis, which is the starting point of the wavelet analysis.2.2.1 The Multiresolution AnalysisIn this subsection we will state the main results of the multiresolution analysis. Forall the proofs and more details, we refer to [34], [32], and [24].A multiresolution analysis consists of a sequence of nested closed subspaces Vj �L2(R), j 2 Z, � � � � V�2 � V�1 � V0 � V1 � V2 � � � ;such that [j2ZVj = L2(R) ;



8and \j2ZVj = f0g :There must exists a L2 function �(x) 2 V0 so thatf�0;k(x); k 2 Zg is an orthonormal basis in V0 ;where �j;k(x) = 2j=2�(2jx� k). The last requirement for a multiresolution analysis isthat f(�) 2 V0 () f(2j �) 2 Vj :In a multiresolution analysis, since�(x) 2 V0 � V1 ;and f�1;n(x); n 2 Zg is an orthonormal basis in V1, there exists fak; k 2 Zg such that�(x) = Xk2Z ak�(2x� k) :De�ne a function  (x)  (x) = Xk2Z(�1)ka�k+1�(2x� k) ;and assume Wj is the orthogonal complement of Vj in Vj+1, then the funndamentalresult is that f j;k(x); k 2 Zg is an orthonormal basis inWj ;where  j;k(x) = 2j=2 (2jx � k). Thus the family f j;k(x); j; k 2 Zg constitute anorthonormal basis of L2(R), and the expansion coe�cients are exactly the discretwavelet transform with respect to  (x).We call �(x),  (x), and fakg the scaling function, the wavelet function, and thescaling vector, respectively. Sometimes we will also use the following two vectorsfhk; k 2 Zg and fgk; k 2 Zg,hk = 2�1=2ak ; gk = (�1)k2�1=2a�k+1 :With these two vectors, we have�(x) = Xk2Zhk�1;k(x) ;



9and  (x) = Xk2Z gk�1;k(x) :We call fhk; k 2 Zg, fgk; k 2 Zg the scaling vector and the wavelet vector, respectively.Note that the di�erence between fak; k 2 Zg and fhk; k 2 Zg is that they havedi�erent normalization.2.2.2 Daubechies' WorkI. Daubechies [8] constructed a class of compactly supported orthogonal wavelet sys-tems in general, as well as a family with growing smoothness for large support, theDaubechies wavelet system. In this subsection, we will review in brief her method toconstruct orthongonal bases of compactly supported wavelets. For more details, werefer to [8] and [9].Let's start with the scaling vector fak; k 2 Zg. As we know, the scaling function�(x) satis�es the 2-scale di�erence equation�(x) = Xk2Z ak�(2x� k) :Taking the Fourier transform, we have�̂(�) = m0(�=2)�̂(�=2) ; (2:1)where m0(�) = 12 Xk2Z ake�ik� :Studying on the equation (2.1), Daubechies found that in order to obtain anorthonormal wavelet system, the fakg must satisfy the linear conditionXk2Z ak = 2 : (2:2)and the quardratic conditionXk2Z akak+2l = 2�0;l = 8<: 2; l = 0;0; otherwise: (2:3)Yet these two equations (2.2) and (2.3) are not su�cient to imply an orthonormalwavelet system.



10At the same time, we are mainly interested in the case when the scaling vectorfakg has �nite length, i.e., there exists a positive number K, such that ak = 0, whenjkj > K, because it garantees the existence of the scaling function �(x) due to thelemma by Deslauriers and Dubuc [11].Lemma 2.1 If m(�) = PN2k=N1 ake�ik�, with PN2k=N1 ak = 1, then thein�nite product Q1j=1m(2�j�) is an entire function of exponential type.In particular, it is the Fourier transform of a distribution with support in[N1; N2].With the above conditions on fakg, W. Lawton [28] prove that  (x) will generatea �ght frame. We combine all these result as the following single theorem.Theorem 2.1 Let fak; k 2 Zg be a sequence having �nite length, ak = 0when jkj > K for some number K. Assume fakg satisfyXk2Z ak = 2 ;Xk2Z akak+2l = 2�0;l :De�ne m0(�) = 12 Xk2Z ake�ik� ;then the in�nite product Q1j=1m0(2�j�) is the Fourier transform of an L2function with compact support, i.e., set�̂(�) = (2�)�1=2 1Yj=1m0(2�j�) ;then �(x) 2 L2(R) and �(x) has compact support. In addition, de�ne (x) = Xk2Z(�1)ka�k+1�(2x� k) ;then  (x) is also compactly supported and its dilations and translationsconstitute a tight frame for L2(R), i.e., for all f(x) 2 L2(R),Xj;k2R j < f; j;k > j2 = jjf jj2 ;where  j;k(x) = 2j=2 (2jx� k). Thus the L2 norm of f(x) is preserved inthe discrete wavelet transform with respect to  (x).



112.2.3 OrthonormalityAs we have seen, the linear condition (2.2) and the quardratic condition (2.3) arenot su�cient to produce an orthogonal system. It can be shown that the waveletfunction  (x) in Theorem 2.1 provides an orthogonal system, i.e.,  j;k constitute anorthonormal basis of L2(R), if and only ifZ 1�1 �(x)�(x� k) dx = �0;k ; 8k 2 Z :The �rst necessary and su�cient condition for the above equation was identi�ed byA. Cohen [6]. He introduced the concept \congruent set" and used this concept togive an equivalent condition of orthogonality.De�nition 2.3 A compact set K is called congruent to [��; �] modulo2� if1. The Lebesgue measure jKj = 2�;2. For all � 2 [��; �], there exists l 2 Z so that � + 2l� 2 K.We are now ready to state Cohen's theorem.Theorem 2.2 Assume all the conditions of Theorem 2.1. Then thefollowing three conditions are equivalent:1. Z 1�1 �(x)�(x� k) dx = �0;k ; 8k 2 Z :2. There exists a compact set K coongruent to [��; �] modulo 2� andcontaining a neighborhood of 0 so thatinfk>0 inf�2K jm0(2�k�)j > 0 :3. There is no non-trivial cycle f�1; � � � ; �ng for the operation � 7! 2�mod (2�) such that jm0(�j)j = 1 for all j = 1; � � � ; n.The following corollary is quite uesful in practice.Corollary 2.1 Assume all the conditions of Theorem 2.1. If m0 has nozeros in [��=3; �=3], thenZ 1�1 �(x)�(x� k) dx = �0;k ; 8k 2 Z :



12Another equivalent condition of orthogonality was given by W. Lawton [29]. It isa very simple criterion based on the multiresolution matrix.Theorem 2.3 Assume all the conditions of Theorem 2.1. De�ne a mul-tiresolution mutrix T by tl;n = 12Xk akan�2l+k :If T has 1 as a nondegenerate eigenvalue, thenZ 1�1 �(x)�(x� k) dx = �0;k ; 8k 2 Z :Note that since only �nite ak are nonzero, the multiresolution matrix T has only�nite nonzero entries. Thus we can check only a small submatrix, which contains allthe nonzero entries of T .Combining Theorem 2.1 and Theorem 2.3, we can construct an orthogonal waveletsystem from the scaling vector fak; k 2 Zg.Theorem 2.4 Let fak; k 2 Zg be a sequence having �nite length, ak = 0when jkj > K for some number K. Assume fakg satisfyXk2Z ak = 2 ;Xk2Z akak+2l = 2�0;l :De�ne m0(�) = 12 Xk2Z ake�ik� ;�̂(�) = (2�)�1=2 1Yj=1m0(2�j�) ; (x) = Xk2Z(�1)ka�k+1�(2x� k) :If the multiresolution matrix Ttl;n = 12Xk akan�2l+k :has 1 as a nondegenerate eigenvalue, then the �j;k(x) = 2j=2�(2jx � k)de�ne a multiresolution analysis, and the  j;k(x) = 2j=2 (2jx� k) are theassociated orthonormal wavelet basis, where the expansion coe�cients areexactly the discrete wavelet transform with respect to  (x).



132.2.4 SmoothnessT. Eirola [14] developed a method to calcute the Sobolev smoonthness of waveletsystems. The equation he worked on is actually the two-scale di�erence equation�(x) = Xk ak�(2x� k) ;no matter how the �(x) will be the scaling function of a wavelet system or not. Thushis result is quite general, no restricted to the wavelet analysis.The main idea is to estimate the multiresolution operator. For more details, werefer to [14] and [22].2.3 The Mallat AlgorithmThe Mallat algorithm [32] tells us the relation between the discrete wavelet transformof di�erent scales. Assume thatcj+1;k = Z 1�1 f(x)2(j+1)=2�(2j+1x� k) dx ;cj;k = Z 1�1 f(x)2j=2�(2jx� k) dx ;dj;k = Z 1�1 f(x)2j=2 (2jx� k) dx :Then we have cj;k = Z 1�1 f(x)2j=2�(2jx� k) dx= Z 1�1 f(x)2j=2 0@Xn2Z an�(2j+1x� 2k � n)1A dx= Xn2Z an Z 1�1 f(x)2j=2�(2j+1x� 2k � n) dx= Xn2Z an2�1=2cj+1;2k+n= Xn2Zhncj+1;2k+n= Xn2Zhn�2kcj+1;n



14Similarlydj;k = Z 1�1 f(x)2j=2 (2jx� k) dx= Z 1�1 f(x)2j=20@Xn2Z(�1)na�n+1�(2j+1x� 2k � n)1A dx= Xn2Z(�1)na�n+1 Z 1�1 f(x)2j=2�(2j+1x� 2k � n) dx= Xn2Z(�1)na�n+12�1=2cj+1;2k+n= Xn2Z gncj+1;2k+n= Xn2Z gn�2kcj+1;nThus we can compute the discrete wavelet transform coe�cients at level j fromthe discrete wavelet transform coe�cients at level j+1 throught the following Mallatalgorithm, cj;k = Xn2Z hn�2kcj+1;n ;and dj;k = Xn2Z gn�2kcj+1;n :It can be shown that in an orthogonal wavelet system, the following reconstructionformula holds, cj+1;k = Xn2Z (h2k�ncj;n + g2k�ndj;n) :2.4 Biorthogonal Wavelet SystemsIn a biorthogonal wavelet system, the decomposition function and the reconstructionfunction can be di�erent. Thus we will have an expansion which looks likef(x) = limJ!1 JXj=�JXk < f; j;k > ~ j;k :In 1992, A. Cohen, I. Daubechies, and J.-C. Feauveau [7] established the theoryof birothogonal wavelet systems. Basically we have two scaling vectors, the analysis



15scaling vector fak; k 2 Zg and the synthesis scaling vector f~ak; k 2 Zg. They satisfythe linear conditions Xk2Z ak = 2 ; (2:4)Xk2Z ~ak = 2 ; (2:5)and the bilinear condition Xk2Z ak~ak+2l = 2�0;l ; 8l 2 Z : (2:6)With fakg, f~akg satisfying (2.4), (2.5), and (2.6), assume both fakg and f~akghave �nite length, we can de�ne two compactly supported functions �(x) and ~�(x)by their Fourier transform,�̂(�) = (2�)�1=2 1Yj=1m0(2�j�) ;~̂�(�) = (2�)�1=2 1Yj=1 ~m0(2�j�) ;where m0(�) = 12 Xk2Z ake�ik� ;~m0(�) = 12 Xk2Z ~ake�ik� :We also de�ne two compactly supported functions  (x) and ~ (x) by (x) = Xk2Z(�1)k~a�k+1�(2x� k) ;~ (x) = Xk2Z(�1)ka�k+1 ~�(2x� k) :For fakg and f~akg satisfying (2.4), (2.5), (2.6) and having �nite length, the  j;kand ~ j;k constitute a weak dual frame of L2(R), i.e., for any f(x); g(x) 2 L2(R),limJ!1 JXj=�JXk < f; j;k >< ~ j;k; g > = < f; g > ;or, in a weak sense, f(x) = limJ!1 JXj=�JXk < f; j;k > ~ j;k ; (2:7)



16where  j;k(x) = 2j=2 (2jx � k); ~ j;k(x) = 2j=2 ~ (2jx � k). And we call �(x),  (x),~�(x), ~ (x) the analysis scaling function, the analysis wavelet function, the synthesisscaling function and the synthesis wavelet function, respectively.If j�̂(�)j � C(1 + j�j)�1=2�� ; j ~̂�(�)j � C(1 + j�j)�1=2�� ;for some constant C, then the limit in (2.7) converges strongly in L2(R).In a biorthogonal system, we can't get the orthogonality, but we can impose someconditions to establish a dual Riesz bases. The su�cient and necessary condition ofa dual Riesz bases for the scaling vectors fakg and f~akg satisfying (2.4), (2.5), (2.6)and having �nite length is similar to the orthogonal cases, which statesZ 1�1 �(x)~�(x� k) dx = �0;k ; 8k 2 Z :



17Chapter 3Biorthogonal Coifman Wavelet SystemsBased on the general theory of wavelet analysis, we will present the mathematicaltheory of biorthogonal Coifman wavelet systems in this chapter. It all begins with awavelet approximation theorem, which is valid for both biorthogonal and orthogonalCoifman wavelet systems. The de�nition of biorthogonal Coifman wavelet systemsfollows right after it and the problem of existence is considered next. Here we intro-duce a time domain design method which is very straight forward. Thus the existenceof biorthogonal Coifman wavelet systems is proved by direct construction for all de-grees. Beside the approximation property, biorthogonal Coifman wavelet systems aresymmetric, have compact support and growing smoothness with large degrees, andconverge to the sinc wavelet system. An attractive feature of biorthgonal Coifmanwavelet systems is that all the scaling vectors are dyadic rational, which means wecan have a very fast multiplication-free discrete wavelet transform implemented ondigital computers.3.1 A Wavelet Approximation TheoremThe Mallat Algorithm tells us how to compute the discrete wavelet transform co-e�cients from one level to the next �ner level. Namely, if fcj+1;k; k 2 Zg are thecoe�cients at the (j + 1)-th level, fcj;k; k 2 Zg and fdj;k; k 2 Zg are the coe�cientsat the j-th level, cj+1;k = Z 1�1 f(x)2(j+1)=2�(2j+1x� k) dx ;cj;k = Z 1�1 f(x)2j=2�(2jx� k) dx ;dj;k = Z 1�1 f(x)2j=2 (2jx� k) dx ;then cj;k = Xn hn�2kcj+1;n ;



18dj;k = Xn gn�2kcj+1;n ;where fhng and fgng are the scaling vector and the wavelet vector, respectively. Andwe can further decompose fcj;k; k 2 Zg into fcj�1;k; k 2 Zg and fdj�1;k; k 2 Zg,decompose fcj�1;k; k 2 Zg into fcj�2;k; k 2 Zg and fdj�2;k; k 2 Zg, and so on. Thisleaves one problem, that is, how to get the coe�cients at the starting level, which arethose fcj+1;k; k 2 Zg in the above decomposition. Without knowing the coe�cientsat the starting level, there is no meaning to talk about the Mallat Algorithm. Thanksto the following theorem, proved by R. O. Wells, Jr. and X. Zhou [56] in 1991, weknow how to solve this problem easily. This theorem is stated in R2 for simplicity,but it is true in Rn as well. The proof can be found in [56].Theorem 3.1 Assume �(x) to be the scaling function of an orthonormalwavelet system with a �nite length scaling vector fak; k 2 Zg, ak = 0 whenjkj > K for some positive integer K,�(x) = Xk2Z ak�(2x� k) : (3:1)We de�ne a constant c by c := 12 Xk2Z kak : (3:2)Assume the function f(x; y) 2 C2 ��
�, where 
 is a bounded open set inR2. Let, for j 2 N,Sj(f)(x; y) := 12j X(k;l)2� f  k + c2j ; l + c2j !�j;k(x)�j;l(y) ; (x; y) 2 
 ;where the index set � = f(k; l) 2 Z2 : (supp(�j;k(x))� supp(�j;l(y))) \
 6= ;g; and �j;i(x) = 2j=2�(2jx� i): Thenjjf(x; y)� Sj(f)(x; y)jjL2(
) � C(1=2j)2 ;and if �(x) 2 C1(R),jjf(x; y)� Sj(f)(x; y)jjH1(
) � C=2j ;where C is a constant depending only on K, the diameter of 
, and themaximum modulus of the �rst and second order derivatives of f(x; y) on�
.



19Theorem 3.1 provides a second order wavelet approximation result for L2 func-tions. Sample values of a su�cient smooth (more precisely, C2) function can be usedas the wavelet transform coe�cients and the corresponding wavelet approximationfunction Sj(f) converges in Sobolev norms of �rst order to the original function.So in practice, we can take the sample values as the discrete wavelet transform co-e�cients at the starting level and apply the Mallat Algorithm on them. Also fromTheorem 3.1, we know that the �ner the starting level is, the closer the approximationis. Thus we will always take sample values at the �nest level whenever possible.In Theorem 3.1, sample values are taken on the points �k+c2j �, a translate of con-stant c from the dyadic rational k2j . Let's have a close look at the constant c. It isde�ned in (3.2) and actually it is closely related to the zero moment and the �rstmoment of the scaling function �(x).Lemma 3.1 Assume c to be a constant as de�ned in (3.2), where fakg isa �nite length sequence satisfying the two-scale di�erence equation (3.1)and Xk2Z ak = 2 :Then c Z 1�1 �(x) dx = Z 1�1 x�(x) dx : (3:3)Proof Using (3.1), we haveZ 1�1 x�(x) dx = Z 1�1 x Xk ak�(2x� k)! dx= Xk ak Z 1�1 x�(2x� k) dx= 14Xk ak Z 1�1(x+ k)�(x) dx= 14Xk ak Z 1�1 x�(x) dx + 14Xk kak Z 1�1 �(x) dx= 12 Z 1�1 x�(x) dx + 12c Z 1�1 �(x) dxThus, c Z 1�1 �(x) dx = Z 1�1 x�(x) dx :



20The integrals on the left hand side and the right hand side of (3.3) are the zeromoment and the �rst moment of �(x), respectively. It follows from Lemma 3.1 thatif the �rst moment of �(x) equals zero, and the zero moment is not equal to zero,then c must be zero. In a wavelet system, the zero moment of the scaling function isalways one. In this case, c is exactly the �rst moment of �(x). When the �rst momentis zero, we may sample on dyadic rationals to get a good approximation. It turnsout the moment values of �(x) plays an important role in the wavelet approximation,not just the �rst moment. The wavelet approximation theorem tells us how wecan impose more vanishing moments on the scaling function �(x) to produce betterapproximation result.Theorem 3.2 (Wavelet Approximation Theorem) Suppose �(x) is anL2(R) solution of the two-scale di�erence equation (3.1), where fakg is a�nite length sequence satisfying the vanishing moment conditions up todegree N , i.e.,Xk2Z (2k)pa2k = Xk2Z (2k + 1)pa2k+1 = 0 ; for p = 1; � � � ; N ; (3:4)Xk2Z a2k = Xk2Z a2k+1 = 1 : (3:5)For a function f (x) 2 CN+10 (R), de�neSj(f) (x) := 2�j=2 Xk2Z f  k2j !�j;k (x) ; (3:6)where �j;k(x) = 2j=2�(2jx� k). Thenjjf (x)� Sj(f) (x) jjL2 � C2�j(N+1) ; (3:7)where C depends only on f and the sequence fakg.The conditions (3.4) and (3.5) are equivalent to the vanishing moments of thescaling function �(x) and the wavelet function  (x), as we will see in Section 3.2. From(3.7) it follows that with more vanishing moments on �(x) and  (x), the convergencerate will be improved with an exponential decay.The proof of Theorem 3.2 is based on the following lemma.



21Lemma 3.2 Assume fakg and �(x) satisfy the same conditions as inTheorem 3.2, thenXk2Z(x�k)p�(x�k) = �0;p = 8<: 1 if p = 00 else ; for p = 0; � � � ; N : (3:8)Lemma 3.2 will be proved in Section 3.2. The equality (3.8) holds in L2, thus, itis true for almost all x 2 R, but not for every x 2 R. If �(x) is continuous, then(3.8) is valid for every x 2 R.Based on Lemma 3.2, we are now ready to prove the wavelet approximation the-orem.Proof of Theorem 3.2 Using the Taylor expansion of f at the point x,f  k2j ! = N�1Xp=0  1p!f (p) (x) k2j � x!p!+ 1N !f (N) (�k) k2j � x!N ;for some �k on the line segment connecting x and k2j .From Lemma 3.2, for 1 � p � N ,Xk2Z k2j � x!p�j;k (x) = 2j=2�jp Xk2Z �k � 2jx�p� �2jx� k� = 0 ;and Xk2Z�j;k (x) = 2j=2 Xk2Z� �2jx� k� = 2j=2 :Since both f(x) and �(x) have compact support, we can �nd a positive number A,such that supp (f) � [�A;A], and supp (�) � [�A;A]. ThenXjkj�(2j+1)A k2j � x!pf (p) (x)�j;k (x) = 0 ; for 1 � p � N;Xjkj�(2j+1)A f (x)�j;k (x) = 2j=2f (x) ;Sj(f) (x) = 2�j=2 Xk2Z f  k2j! �j;k (x) = 2�j=2 Xjkj�(2j+1)A f  k2j!�j;k (x) :Back to the Taylor expansion,Sj(f) (x) = 2�j=2 Xjkj�(2j+1)A0@N�1Xp=0  1p!f (p) (x) k2j � x!p!



22+ 1N !f (N) (�k) k2j � x!N1A �j;k(x)= 2�j=20@N�1Xp=0 Xjkj�(2j+1)A 1p!f (p) (x) k2j � x!p�j;k (x)1A+ 2�j=2 Xjkj�(2j+1)A0@ 1N !f (N) (�k) k2j � x!N�j;k (x)1A= f(x) + 2�j=2 Xjkj�(2j+1)A0@ 1N !f (N) (�k) k2j � x!N�j;k(x)1A= f(x) + 2�j=2 Xjkj�(2j+1)A0@ 1N ! �f (N)(�k)� f (N)(x)� k2j � x!N�j;k(x)1A :Thus,Sj(f) (x)� f (x) = 2�j=2 Xjkj�(2j+1)A0@ 1N ! �f (N)(�k)� f (N)(x)� k2j � x!N�j;k (x)1A :But ���f (N)(�k)� f (N)(x)��� � C j�k � xj � C ����� k2j � x����� ;for some constant C depending only on f . Sojjf (x)� Sj(f) (x) jjL2� ������������2�j=2 Xjkj�(2j+1)A ������ CN ! k2j � x!N+1�j;k (x)������ ������������L2= 2�j(N+3=2)CN ! ������������ Xjkj�(2j+1)A ���(k � y)N+1�(y � k)��� ������������L2 ;where we make the substitution y = 2jx. De�negk (y) := ���(k � y)(N+1) � (y � k)��� ;then gk (y) has compact support [�A+ k;A+ k], and jjgk (y) jjL2 is equal to the L2norm of xN+1�(x), which is another constant C depending only on � (x). Using thiswe obtainjjf (x)� Sj(f) (x) jjL2



23� 2�j(N+3=2)CN ! 0@Z 1�1 0@ Xjk1j;jk2j�(2j+1)A gk1 (y) gk2 (y)1A dy1A1=2= 2�j(N+3=2)CN ! 0@Z 1�1 0@ Xjk1j;jk2j�(2j+1)A;jk1�k2 j�2A gk1 (y) gk2 (y)1A dy1A1=2= 2�j(N+3=2)CN !  2 �2j + 1�A � 4A �  maxk1;k22Z�����Z 1�1 gk1 (y) gk2 (y) dy�����!!1=2= 2�j(N+3=2)CN ! �8 �2j + 1�A2 � C2�1=2� C2�j(N+1) ;where C depends only on f(x) and � (x), i.e., C depends only on f and fakg.We call Sj(f)(x) de�ned in (3.6) the wavelet sampling approximation of the func-tion f(x) at the level j. It is similar to but distinct from the wavelet orthogonalprojection P j (f) := Xk2Z�Z 1�1 f (x)�j;k (x) dx� � �j;k (x) ;which has been studied by various authors (see [3], [16], [17], [46], and others). Thewavelet sampling approximation is what is used in most applications of wavelets, asit is the easiest approximation to compute. (Simply let the sample values of the givenfunction be the corresponding expansion coe�cients.) The value of the above result isthat for biorthogonal and orthogonal Coifman wavelet systems (which will be de�nedin Section 3.2 and 4), the degree of approximation is much better than that obtainedusing Daubechies wavelet systems and the orthogonal projection.As it can been seen in the proof, the smooth condition f(x) 2 CN;10 (R) is su�cientfor the above argument. We formulate the similar result for H�older space in thefollowing corollary.Corollary 3.1 Assume fakg and �(x) satisfy the same conditions as inTheorem 3.2. If f(x) 2 CN;�0 (R); 0 < � � 1, then������f(x)� Sj(f)(x)������L2 � C2�j(N+�) ;where Sj(f)(x) is the wavelet sampling approximation at the level j, andC is a constant depending only on f and fakg.



24For smooth functions, the L2 norm estimate is not enough, sometimes. One ofthe best candidates is the Hn norm. The Hn norm also measure the di�erence ofthe (weak) derivatives. Since the wavelet sampling approximation Sj(f) is a linearcombination of �j;k, we require some regularity condition on the scaling function �(x).Theorem 3.3 Assume the same conditions as in Theorem 3.2. If inaddition �(x) 2 Cn(R), where n 2 Z; 0 � n � N , then������f(x)� Sj(f)(x)������Hn � C2�j(N+1�n) ; (3:9)where C depends only on f and the sequence fakg.To get the Hn estimate of the di�erence between f(x) and Sj(f)(x), we need avariation of Lemma 3.2.Lemma 3.3 Assume the same conditions as in Lemma 3.2, if in addition�(x) 2 Cn(R), where n is a nonnegative integer, thenXk2Z(x� k)p�(m)(x� k) = (�1)p(p!)�0;m�p ; (3:10)where p = 0; � � � ; N , and 0 � m � n.Proof We prove this by induction on m. The m = 0 case is given in Lemma 3.2.Now assume (3.10) holds for 0 � m � l, where l � n � 1. We will prove that whenm = l+ 1, (3.10) still holds. De�nes(x; p;m) = Xk2Z(x� k)p�(m)(x� k) : (3:11)Again, since �(x) has compact support, s(x; p;m) is well-de�ned. And we can inter-change the sum and the di�erentiation because for any point x, only �nite terms inthe right hand side sum of (3.11) count. Sos(x; p; l + 1) = Xk2Z(x� k)p�(l+1)(x� k)= Xk2Z��(x� k)p�(l)(x� k)�0 � p � (x� k)(p�1)�(l)(x� k)�= Xk2Z �(x� k)p�(l)(x� k)�0 �Xk2Z p � (x� k)(p�1)�(l)(x� k)



25= 0@Xk2Z(x� k)p�(l)(x� k)1A0 � pXk2Z(x� k)(p�1)�(l)(x� k)= (s(x; p; l))0 � p � s(x; p� 1; l)= ((�1)p(p!)�0;l�p)0 � p � (�1)(p�1)((p� 1)!)�0;l�p+1= 0 + (�1)p(p!)�0;l�p+1= (�1)p(p!)�0;l+1�p :The lemma is proved.The proof of Theorem 3.3 is almost the same as Theorem 3.2. We will look at theTaylor expansion again.Proof of Theorem 3.3 The case n = 1 will be proved here. The proof for thegeneral case will be then apparent.We now show that jjf 0 (x)� �Sj(f) (x)�0 jjL2 � C2�jN ;for some constant C, independent of j. Using the same notation as in the proof ofTheorem 3.2, we have�Sj(f) (x)�0= 0@2�j=2 Xk2Z f  k2j! �j;k (x)1A0= 0@2�j=2 Xjkj�(2j+1)A f  k2j !�j;k (x)1A0= 2�j=2 Xjkj�(2j+1)A f  k2j! (�j;k (x))0= 2j Xjkj�(2j+1)A f  k2j !�0 �2jx� k�= 2j Xjkj�(2j+1)A0@N�1Xp=0  1p!f (p) (x) k2j � x!p!+ 1N !f (N) (�k) k2j � x!N1A�0 �2jx� k�= 2j 0@N�1Xp=0 Xjkj�(2j+1)A 1p!f (p) (x) k2j � x!p�0 �2jx� k�!



26+ Xjkj�(2j+1)A0@ 1N !f (N) (�k) k2j � x!N�0 �2jx� k�1A1A= 2j Xjkj�(2j+1)A �f (x)�0 �2jx� k��+ 2j Xjkj�(2j+1)A f 0 (x) k2j � x!�0 �2jx� k�!+ 2j 0@N�1Xp=2 Xjkj�(2j+1)A 1p!f (p) (x) k2j � x!p�0 �2jx� k�1A+ 2j Xjkj�(2j+1)A0@ 1N !f (N) (�k) k2j � x!N�0 �2jx� k�1A= f 0 (x) + 2j Xjkj�(2j+1)A0@ 1N !f (N) (�k) k2j � x!N�0 �2jx� k�1A= f 0 (x) + 2j Xjkj�(2j+1)A0@ 1N ! �f (N) (�k)� f (N)(x)� k2j � x!N�0 �2jx� k�1A :Thus,��������f 0 (x)� �Sj(f) (x)�0��������L2= 2j ������������ Xjkj�(2j+1)A0@ 1N ! �f (N) (�k)� f (N)(x)� k2j � x!N�0 �2jx� k�1A������������L2 :Now applying the same estimate as in Theorem 3.2, we getjjf 0 (x)� �Sj(f) (x)�0 jjL2 � C2�jN ;where C depends only on f and fakg. Then (3.9) follows readily from above andTheorem 3.2.If 
 is a bounded open set in R, a function f 2 CN ��
� can be extended to~f 2 CN0 (R). So the all previous results on CN0 (R) function is certainly true forCN ��
� function while the L2 (R) norm is replaced with the L2 (
) norm.When dealing with higher dimension Rm other than R, we may take the ten-sor product of the one dimensional wavelet systems to construct higher dimensionalwavelet systems. And it is straightforward to generalize the one dimensional resultsto higher dimensional cases.



27Theorem 3.4 Suppose fa1k; k 2 Zg; fa2k; k 2 Zg; � � � ; famk ; k 2 Zg are afamily of sequences with �nite length (i.e., there exists a positive integerK, alk = 0 for 1 � l � m, and jkj > K). Assume that falkg satis�es thevanishing moments conditions up to degree N , i.e., for 1 � l � mXk2Z (2k)pal2k = Xk2Z (2k + 1)pal2k+1 = 0 ; for p = 1; � � � ; N ;Xk2Z al2k = Xk2Z al2k+1 = 1 :And for 1 � l � m, �l(x) is a L2(R) solution of the two-scale di�erenceequation �l(x) = Xk2Z alk�l(2x� k) :Then for any function f (x1; x2; � � � ; xm) 2 CN;10 (Rm),jjf (x1; x2; � � � ; xm) � Sj(f) (x1; x2; � � � ; xm) jjL2 � C2�j(N+1) ;where C depends only on f and the family of sequences falkg, andSj(f) (x1; x2; � � � ; xm) := 2�jm=2 Xk1;k2;���;km2Zf  k12j ; k22j ; � � � ; km2j !� �1j;k1 (x1) � �2j;k2 (x2) � � ��nj;km (xm) :If in addition, �l (x) 2 Cn (R) for all 1 � l � m, where n is a nonnegativeinteger not greater than N , thenjjf (x1; x2; � � � ; xm) � Sj(f) (x1; x2; � � � ; xm) jjHn � C2�j(N+1�n) :The proof is an easy modi�cation of the one dimensional case and will be omitedhere. In practice we may choose falkg to be the same sequence, then �1 (x) = �2 (x) =� � � = �m (x).3.2 De�nition of Biorthogonal Coifman Wavelet SystemsThe wavelet approximation theorem requires the sequence fakg satisfying the linearconditions (3.4) and (3.5). When working in the wavelet system, we see that thesetwo conditions are exactly the vanishing moment conditions on the scaling function�(x) and  (x).



28Lemma 3.4 Suppose �(x);  (x) 2 L2(R) satisfying�(x) = Xk2Z ak�(2x� k) ; (3:12) (x) = Xk2Z(�1)ka�k+1�(2x� k) ; (3:13)where fakg is a �nite length sequence, �(x) 2 L1(R) and it is normalizedZ 1�1 �(x) dx = 1 : (3:14)Then the following two conditions are equivalent,1. The vanishing moments of �(x) and  (x) are both of degree N , i.e.,Mom0( ) := Z 1�1  (x) dx = 0 ;Momp(�) := Z 1�1 xp�(x) dx = 0 ; for p = 1; � � � ; N ;Momp( ) := Z 1�1 xp (x) dx = 0 ; for p = 1; � � � ; N :2. The sequence fakg satisfyingXk2Z (2k)pa2k = Xk2Z (2k + 1)pa2k+1 = 0 ; for p = 1; � � � ; N ;Xk2Z a2k = Xk2Z a2k+1 = 1 :Proof 1 =) 2: We have1 = Z 1�1 �(x) dx= Z 1�1  Xk ak�(2x� k)! dx= Xk ak Z 1�1 �(2x� k) dx= 12Xk ak



29Similarly, 0 = Z 1�1  (x) dx= Z 1�1  Xk (�1)ka�k+1�(2x� k)! dx= Xk (�1)ka�k+1 Z 1�1 �(2x� k) dx= Xk (�1)ka�k+1 � 12= 12  Xk a2k+1 �Xk a2k!Then it follows Xk a2k = Xk a2k+1 = 1 :Now assume that the equalityXk (2k)pa2k = Xk (2k + 1)pa2k+1 = 0 (3:15)holds for 1 � p � l, where 0 � l � N � 1. (When l = 0, there will be no assumptionon (3.15).) We want to prove that (3.15) also holds for p = l+1. Then by induction,(3.15) will be valid for p = 1; � � � ; N .By the vanishing moments on �(x) and  (x),0 = Z 1�1 xl+1�(x) dx= Z 1�1 xl+1  Xk ak�(2x� k)! dx= Xk ak Z 1�1 xl+1�(2x� k) dx= 12l+2 Xk ak Z 1�1(x+ k)l+1�(x) dx= 12l+2 Xk ak Z 1�1 0@ l+1Xm=00@ l+ 1m 1Axmkl+1�m1A �(x) dx= 12l+2 Xk ak l+1Xm=00@ l + 1m 1A kl+1�m Z 1�1 xm�(x) dx= 12l+2 Xk akkl+1



30and 0 = Z 1�1 xl+1 (x) dx= Z 1�1 xl+1  Xk (�1)ka�k+1�(2x� k)! dx= Xk (�1)ka�k+1 Z 1�1 xl+1�(2x� k) dx= 12l+2 Xk (�1)ka�k+1 Z 1�1(x+ k)l+1�(x) dx= 12l+2 Xk (�1)ka�k+1 Z 1�1 0@ l+1Xm=00@ l + 1m 1A xmkl+1�m1A �(x) dx= 12l+2 Xk (�1)ka�k+1 l+1Xm=00@ l+ 1m 1A kl+1�m Z 1�1 xm�(x) dx= 12l+2 Xk (�1)ka�k+1kl+1= 12l+2 Xk (�1)1�kak(1 � k)l+1= 12l+2 Xk (�1)1�kak(�1)l+1kl+1= 12l+2 Xk (�1)l�kakkl+1= (�1)l2l+2  Xk (2k)l+1a2k �Xk (2k + 1)l+1a2k+1!Thus it follows immediately thatXk (2k)l+1a2k = Xk (2k + 1)l+1a2k+1 = 0 :2 =) 1: This part is apparent from the above argument.Based on Lemma 3.4, here is the proof of Lemma 3.2.Proof of Lemma 3.2 De�nes(x) = Xk2Z(x� k)p�(x� k) :Since fakg has �nite length, �(x) has compact support. So s(x) is well-de�ned andperiodic with 1 as a period. We have2ps(x) = 2p Xk2Z(x� k)p�(x� k)



31= 2p Xk2Z Xm2Z (am(x� k)p�(2x� 2k �m))= 2p Xk2ZXi2Z (ai�2k(x� k)p�(2x� i))= Xi2ZXk2Z (ai�2k(2x� i+ i� 2k)p�(2x� i))= Xi2ZXk2Z pXl=0 0@ai�2k 0@ pl 1A (2x� i)l(i� 2k)p�l�(2x� i)1A= Xi2Z pXl=00@0@ pl 1A0@Xk2Z(i� 2k)p�lai�2k1A (2x� i)l�(2x� i)1AFrom (3.4) and (3.5), Xk2Z(i� 2k)p�lai�2k = �0;p�l :Thus 2ps(x) = Xi2Z(2x� i)p�(2x� i) = s(2x) :If we know �(x) is continuous, then sinceZ 10 s(x) dx = Z 10 0@Xk2Z(x� k)p�(x� k)1A dx = Z 1�1 xp�(x) dx = �0;p ;the lemma follows easily. Without assuming the continuity, we can prove the lemmain the following way. For any i; j 2 Z; j � 0,Z i+12ji2j s(x) dx = Z i+12ji2j 2�ps(2x) dx= 2�p�1 Z i+12(j�1)i2(j�1) s(x) dx= � � �= 2(�p�1)j Z i+1i s(x) dx= 2(�p�1)j Z i+1i 0@Xk2Z(x� k)p�(x� k)1A dx= 2(�p�1)j Z 1�1 xp�(x) dx :The conditions (3.4) and (3.5) imply thatZ 1�1 xp�(x) dx = �0;p :



32Then, Z i+12ji2j s(x) dx = 2(�p�1)j�0;p : (3:16)As we know, the restriction of the Haar wavelet system on [0,1] is an orthonormalbasis of L2([0; 1]), and the left hand side of (3.16) is exactly the coe�cients for thewavelet orthogonal projection at the level j. So it follows immediately thats(x) = Xk2Z(x� k)p�(x� k) = �0;p :The lemma follows.It is now clear why the two conditions (3.4) and (3.5) are imposed on fakg in thewavelet approximation theorem. All we want is that the vanishing moments of �(x)and  (x) are both of some degree N . Thus the vanishing moment conditions not onlyimply the smoothness of the scaling function (and hence the wavelet function) butalso provide a very neat approximation. Based on this observation, we introduce thebiorthogonal Coifman wavelet system.De�nition 3.1 A biorthogonal wavelet system with compact support iscalled a biorthogonal Coifman wavelet system (in short, BCW) of degreeN if the following two conditions are satis�ed,� the vanishing moments of the scaling function ~�(x) and the waveletfunction ~ (x) are both of degree N , i.e.,Momp(~�) = Z 1�1 xp ~�(x) dx = �0;p; for p = 0; � � � ; N; (3:17)Momp( ~ ) = Z 1�1 xp ~ (x) dx = 0; for p = 0; � � � ; N; (3:18)� the vanishing moment of the wavelet function  (x) is of degree N ,Momp( ) = ZR xp (x) dx = 0; for p = 0; � � � ; N: (3:19)Note that in the de�nition of the biorthogonal Coifman wavelet system, althoughthere is no vanishing moment requirement on the analysis scaling function �(x), itfollows that �(x) also has vanishing moments up to degree N , because of the perfectreconstruction condition.



33Lemma 3.5 For a biorthogonal Coifman wavelet system of degree N ,the vanishing moments' degree of the analysis scaling function �(x) is alsoN , Momp(�) = Z 1�1 xp�(x) dx = 0 ; for p = 1; � � � ; N :Proof From Lemma 3.4, it is su�cient to prove thatXk2Z akkp = 0 ; for p = 1; � � � ; N :From the vanishing moment condition of the synthesis part, we haveXk2Z ~a2k(2k)m = Xk2Z ~a2k+1(2k + 1)m = �0;m ; for 0 � m � p :Thus Xk;l2Zkp�m(k + 2l)mak~ak+2l = Xk2Z kp�makXl2Z(k + 2l)m~ak+2l= Xk2Z kp�mak � �0;mSo Xk2Z akkp = Xk;l2Zkpak~ak+2l= pXm=00@(�1)m 0@ pm 1A Xk;l2Z kp�m(k + 2l)mak~ak+2l1A= Xk;l2Zak~ak+2l pXm=00@(�1)m0@ pm 1A kp�m(k + 2l)m1A= Xk;l2Zak~ak+2l (k � (k + 2l))p= Xk;l2Z(�2l)pak~ak+2lThe perfect reconstruction condition states thatXk2Z ak~ak+2l = 2�0;l ; 8l 2 Z :It follows that Xk2Z akkp = Xk;l2Z(�2l)pak~ak+2l



34= Xl2Z(�2l)p Xk2Z ak~ak+2l= Xl2Z(�2l)p � 2�0;l= Xl2Z0= 0Thus in a biorthogonal Coifman wavelet system, both the analysis pair f�; gand the synthesis pair f~�; ~ g have vanishing moments up to some degree N . In thedecomposition process, based on the wavelet approximation theorem, we can sampleon dyadic rationals and take these values as the discrete wavelet transform coe�cientsat the starting level. We can apply the Mallat Algorithm on these sample values andanalyse the data (compression, denoising, etc). In the reconstruction process, again,based on the wavelet approximation theorem, after applying the Mallat Algorithm onthe data, we can take the inverse discrete wavelet transform coe�cients as the samplevalues on dyadic rationals and reconstruct the original data. That's why we imposevanishing moments on both the analysis pair and the synthesis pair. Now the naturalquestion is whether biorthogonal Coifman wavelet systems exist. If yes, how can onedesign them? We will study on the existence problem in the next section.3.3 Construction of BCWsIn this section, we will construct biorthogonal Coifman wavelet systems and obtainthe exact formula for each degree. As is obvious, if we can construct them, then theexistence problem is solved simultaneously.Now let's see how many conditions are there imposed on biorthogonal Coifmanwavelet systems? From the theory of biorthogonal wavelet systems, we know that theanalysis scaling vector fakg and synthesis scaling vector f~akg must satisfy the linearcondition Xk2Z ak = Xk2Z ~ak = 2 ; (3:20)and the perfect construction conditionXk2Z ak~ak+2l = 2�0;l ; 8l 2 Z : (3:21)



35The vanishing moment conditions in the de�nition of the biorthogonal Coifmanwavelet system are equivalent toXk2Z(2k)pa2k = Xk2Z(2k + 1)pa2k+1 = �0;p ; for p = 0; � � � ; N ; (3:22)Xk2Z(2k)p~a2k = Xk2Z(2k + 1)p~a2k+1 = �0;p ; for p = 0; � � � ; N : (3:23)In practice, we prefer that the length of the synthesis scaling vector be shorter thanthe length of the analysis scaling vector. The reason is that for longer analysis scalingvectors, we will get more redundant information after the discrete wavelet transform,which will be ideal for the further processing in the wavelet domain; and for shortersynthesis scaling vectors, the inverse discrete wavelet transform will provide a compactrepresention of the original data, which is very useful, for example, for data storageand transmission. Based on this thought, we will �rst look at the synthesis scalingvector f~akg and try to �nd the minimum length solution of it at each degree.The linear condition (3.20) for f ~akg is already included in (3.23) and we don't needto worry about the bilinear condition (3.21) right now. Thus there are totally 2N +2linear conditions on the scaling vector f~akg. And the minimum length solution willhave, of course, 2N + 2 elements in the �nite length sequence f~akg. For symmetricreason, we will distribute these 2N + 2 elements in f~akg as symmetric as possible.More precisely, we are looking for a solution of the form f~a�N ; ~a�N+1; � � � ; ~aN+1g.Let's have another look at the linear equation system (3.23). By its form, these2N + 2 linear equations can be naturally divided into two parts, those on the eventerms ~a2k and those on the odd terms ~a2k+1. For those N +1 linear equations on theeven terms, it is easy to see that the solution is exactly that all are zero except that~a0 = 1. For those N + 1 linear equations on the odd terms, the coe�cient matrixof these N + 1 variables ~a2k+1 is a Vandermonde's matrix (so is for the even terms).Thus the solution for these N + 1 odd terms always exist and it is unique. Using thedeterminant formula of a Vandermonde's matrix, we get the exact formulas for theseodd terms,� if N is even, N = 2n,~a2k+1 = Qnj 6=k;j=�n(2j + 1)2N Qnj 6=k;j=�n(j � k) = (�1)k2k + 1 0@ 2n� 1n� 1 1A0@ 2nn+ k 1A 2n + 124n�1



36� if N is odd, N = 2n � 1,~a2k+1 = Qn�1j 6=k;j=�n(2j + 1)2N Qn�1j 6=k;j=�n(j � k) = (�1)k2k + 1 0@ 2n � 2n� 1 1A0@ 2n � 1n + k 1A 2n � 124n�3here we de�ne 0@ ml 1A := 0 if l > m or l < 0, which is standard in combinatorialtheory.So we have got the formula for the minimum length synthesis scaling vector f~akgfor every degree N . As it can be seen in the above discussion, the minimum lengthsynthesis scaling vector is unique. The next theorem tells us how to construct theanalysis scaling vector fakg from the synthesis scaling vector f~akg.Theorem 3.5 Assume ~ak to be de�ned as above, depending on whetherN is even or odd. Set a2k+1 = ~a2k+1 ; (3:24)and a2k = 2�0;k �Xl2Z ~a2l+1~a2l+1�2k : (3:25)Then the resulting fakg and f~akg will constitute a biorthogonal Coifmanwavelet system of degree N .Proof We need to check (3.21) and (3.22).First, Xk2Z ak~ak+2l = Xk2Z a2k~a2k+2l + Xk2Z a2k+1~a2k+1+2l= a�2l + Xk2Z ~a2k+1~a2k+1+2l= 2�0;�l �Xk2Z ~a2k+1~a2k+1+2l + Xk2Z ~a2k+1~a2k+1+2l= 2�0;�l= 2�0;lAll remaining is to show thatXk2Z(2k)pa2k = �0;p ; forp = 0; � � � ; N :



37We haveXk2Z(2k)pa2k= Xk2Z0@(2k)p0@2�0;k �Xn2Z ~a2n+1~a2n+1�2k1A1A= 2�0;p � Xk;n2Z(2k)p~a2n+1~a2n+1�2k= 2�0;p � Xm;n2Z(2n� 2m)p~a2n+1~a2m+1= 2�0;p � Xm;n2Z((2n+ 1) � (2m + 1))p~a2n+1~a2m+1= 2�0;p � Xm;n2Z pXl=00@(�1)l0@ pl 1A (2n+ 1)p�l(2m+ 1)l~a2n+1~a2m+11A= 2�0;p � pXl=0(�1)l0@0@ pl 1A Xm2Z(2m+ 1)l~a2m+1 Xn2Z(2n + 1)p�l~a2n+11A= 2�0;p � pXl=0(�1)l0@0@ pl 1A Xm2Z(2m+ 1)l~a2m+1�l;p1A= 2�0;p � (�1)p Xm2Z(2m+ 1)p~a2m+1= 2�0;p � (�1)p�0;p= 2�0;p � �0;p= �0;pNote that the analysis scaling vector given by Theorem 3.5 is the minimum lengthsolution for the analysis scaling vector. Because the bilinear condition (3.21) is exactlya2k = 2�0;k �Xl2Za2l+1~a2l+1�2k ;the minimum length analysis scaling vector must be the analysis scaling vector havingthe minimumnumber of nonzero odd terms. From (3.22) and (3.23), such an analysisscaling vector will have the same odd terms as the minimum length synthesis scalingvector. Thus we obtain the biorthogonal Coifman wavelet system with minimumlength.



38In the remainder of this thesis, a biorthogonal Coifman wavelet system of degreeN will always be refered to as biorthogonal Coifman wavelet system of degree N withminimum length, which is given by in Theorem 3.5, unless it is otherwise stated. Forconvenience, we will call it BCW-N.The scaling vectors of the minimum length biorthogonal Coifman wavelet systemswith degrees N = 0; 1; 2; 3, and 4 are listed in Table 3.1. The biorthogonal Coifmanwavelet system with degree 0 (BCW-0) is exactly the Haar wavelet system, which isorthogonal. The biorthogonal Coifman wavelet system with degree 1 (BCW-1) is aspline system. We include the illustrations for degree 2, 3 and 4 (BCW-2, BCW-3and BCW-4) in Figure 3.1, 3.2, and 3.3.3.4 Properties of BCWsWe now know how to construct biorthogonal Coifman wavelet systems. and thescaling vectors of degrees up to 4 are listed in Table 3.1. In this section we will lookat some properties of these wavelet systems.3.4.1 ApproximationThe wavelet approximation theorem is the starting point of biorthogonal Coifmanwavelet systems (and also orthogonal Coifman wavelet systems, which will be studiedin Chapter 4). From De�nition 3.1, the following theorem is just stating the waveletapproximation theorem in the language of biorthogonal wavelet systems.Theorem 3.6 For a biorthogonal Coifman wavelet system of degree Nwith the analysis scaling function �(x) and synthesis scaling function ~�(x),if f(x) 2 CN;1(R), de�ne, for j 2 Z,f j(x) := 2�j=2 Xk2Z f  k2j! ~�j;k(x) ;where ~�j;k(x) = 2j=2 ~�(2jx� k). Then������f(x)� f j(x)������L2 � C2�j(N+1) ;where C depends only on f and ~�.If in addition ~� 2 Cn(R), where n 2 Z; 0 � n � N , then������f(x)� f j(x)������Hn � C2�j(N+1�n) ;
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Figure 3.1 The Biorthogonal Coifman Wavelet System of Degree 2
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Figure 3.2 The Biorthogonal Coifman Wavelet System of Degree 3



40Table 3.1 The Coe�cients of Biorthogonal Coifman Wavelet SystemsN ak ~akN = 0 a0 = 1 ~a0 = 1a1 = 1 ~a1 = 1N = 1 a�2 = -1/4a�1 = 1/2 ~a�1 = 1/2a0 = 3/2 ~a0 = 1a1 = 1/2 ~a1 = 1/2a2 = -1/4 ~a2 = 0a3 = 0N = 2 a�4 = 3/64a�3 = 0a�2 = -3/16 ~a�2 = 0a�1 = 3/8 ~a�1 = 3/8a0 = 41/32 ~a0 = 1a1 = 3/4 ~a1 = 3/4a2 = -3/16 ~a2 = 0a3 = -1/8 ~a3 = -1/8a4 = 3/64a5 = 0N = 3 a�6 = -1/256a�5 = 0a�4 = 9/128a�3 = -1/16 ~a�3 = -1/16a�2 = -63/256 ~a�2 = 0a�1 = 9/16 ~a�1 = 9/16a0 = 87/64 ~a0 = 1

N ak ~akN = 3 a1 = 9/16 ~a1 = 9/16a2 = -63/256 ~a2 = 0a3 = -1/16 ~a3 = -1/16a4 = 9/128 ~a4 = 0a5 = 0a6 = -1/256a7 = 0N = 4 a�8 = 15/16384a�7 = 0a�6 = -35/2048a�5 = 0a�4 = 345/4096 ~a�4 = 0a�3 = -5/128 ~a�3 = -5/128a�2 = -405/2048 ~a�2 = 0a�1 = 15/32 ~a�1 = 15/32a0 = 10317/8192 ~a0 = 1a1 = 45/64 ~a1 = 45/64a2 = -405/2048 ~a2 = 0a3 = -5/32 ~a3 = -5/32a4 = 345/4096 ~a4 = 0a5 = 3/128 ~a5 = 3/128a6 = -35/2048a7 = 0a8 = 15/16384a9 = 0where C depends only on f and ~�.The same results hold when replacing ~� with �.3.4.2 Compact SupportFrom De�nition 3.1, biorthogonal Coifman wavelet systems are always compactlysupported. All the analysis scaling vectors and synthesis scaling vectors have �nitelength. This �niteness property is extremely useful when implementing a discretewavelet transform on digital computers.
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Figure 3.3 The Biorthogonal Coifman Wavelet System of Degree 43.4.3 SymmetryAs we know, in a wavelet system, the symmetry of the scaling vector corresponds tothe symmetry of the scaling function. Thus we call a wavelet system is symmetric isthe scaling vector is symmetric. One big advantage of biorthogonal wavelet systemsover orthogonal wavelet systems is that biorthogonal wavelet systems can be sym-metric, while orthogonal ones can't, except for the Haar wavelet system. Symmetryis always pursued whenever possible in applications. For example, in image coding,if we have a symmetric biorthogonal wavelet system, then the image data can bere
ectively extended to reduce the edge e�ect.The even terms of biorthogonal Coifman wavelet systems are always symmetric,which is apparent from Theorem 3.5. Since the analysis scaling vector and synthesisscaling vector have the same odd terms, the symmetry of a biorthogonal Coifmanwavelet system will depend solely on the symmetry of the odd terms of scaling vectors.Lemma 3.6 If N is odd, then in a biorthogonal Coifman wavelet systemof degree N , a2k+1 = a�2k�1 ; ~a2k+1 = ~a�2k�1 :



42Proof Assume N = 2n� 1, for some n 2 N, then~a2k+1 = (�1)k2k + 1 0@ 2n � 2n � 1 1A0@ 2n � 1n+ k 1A 2n� 124n�3= (�1)k(2k + 1)(n � k � 1)!(n+ k)! 0@ 2n� 2n� 1 1A (2n� 1)(2n � 1)!24n�3= (�1)k+1(�2k � 1)(n� k � 1)!(n+ k)! 0@ 2n � 2n � 1 1A (2n � 1)(2n � 1)!24n�3= (�1)�k�1(2(�k � 1) + 1)(n + (�k � 1))!(n� (�k � 1)� 1)!� 0@ 2n � 2n� 1 1A (2n � 1)(2n � 1)!24n�3= (�1)�k�12(�k � 1) + 1 0@ 2n � 2n� 1 1A0@ 2n � 1n + (�k � 1) 1A 2n� 124n�3= ~a2(�k�1)+1= ~a�2k�1And a2k+1 = ~a2k+1 = ~a�2k�1 = a�2k�1 :Thus all odd degrees' biorthogonal Coifman wavelet systems are symmetric.Theorem 3.7 If N is odd, then the biorthogonal Coifman wavelet sys-tem of degree N is symmetric, i.e.,ak = a�k ; ~ak = ~a�k :This theorem can also be tested for BCW-0, BCW-1, BCW-2, BCW-3, and BCW-4 in Table 3.1.3.4.4 SmoothnessSmoothness has been paid lots of attention in wavelet analysis since smooth waveletsystems will be more appropriate for smooth functions. That is one reason whythe Haar wavelet system is not widely used in practice. Theorem 3.3 states that if



43the scaling function belongs to some smooth function space, then we can have anHn estimate on the approximation error. So we would like to have some asymptoticestimate of the smoothness of biorthogonal Coifman wavelet systems. By the SobolevEmbedding Theorem, we know that it is su�cient to work on the Sobolev smoothness.Using Eirola's method [14], it is straightforword to prove the following theorem.Theorem 3.8 For a biorthogonal Coifman wavelet system with degreeN , its Sobolev smoothness issN =  1 � log 32 log 2!N +O(logN) � 0:2075N :We borrowed a Matlab program provided by P. Heller to calculate the Sobolevsmoothness of biorthogonal Coifman wavelet systems. The results of the �rst ten arelisted in Table 3.2. The BCW-0, which is the Haar wavelet system, and the BCW-1,which is a piecewise linear spline system, are omitted from the table.3.4.5 Unconditional BasesAs we know, in a biorthogonal wavelet system with the analysis wavelet function  (x)and synthesis wavelet function ~ (x), the wavelet expansionf = limJ!1 JXj=�J Xk2Z < f; j;k > ~ j;kholds only in the weak L2 sense. Without any other assumption, the  j;k or ~ j;kmay even fail to constitute frames. Though we can't derive orthonormal bases fromsymmetric biorthogonal wavelet systems, we do desire to have some reasonable bases,such as unconditional bases where we can interchange the order of the summationin the wavelet expansion. In a Hilbert space, an unconditional basis is also called aRiesz basis. The  j;k, ~ j;k constitute two dual Riesz bases if and only ifZ 1�1 �(x)~�(x� k) dx = �0;k 8k 2 Z : (3:26)In [7], A. Cohen, I. Daubechies, and J.-C. Feauveau proved several equivalent condi-tions of (3.26). But none of them are easy to verify. Here we give a simple criterionwhich is a variation of Lawton's condition in the orthogonal wavelet system.



44Table 3.2 Sobolev Smoothness of Biorthogonal Coifman Wavelet SystemsN biorthogonal Coifman wavelet systemanalysis scaling function synthesis scaling function2 1.200 1.8393 1.179 2.4414 1.773 2.7145 1.772 3.1756 2.292 3.4097 2.305 3.7938 2.793 4.0049 2.815 4.344Lemma 3.7 In a compactly supported biorthogonal wavelet systemwiththe analysis pair f�(x);  (x)g and synthesis pair f~�(x); ~ (x)g, de�ne amultiresolution matrix T = (tk;l);tk;l = 12 Xm2Z am~am+l�2k ;where fakg and f~akg are the scaling vectors with �nite length. IfZ 1�1 �(x) dx = Z 1�1 ~�(x) dx = 1 ;Z 1�1  (x) dx = Z 1�1 ~ (x) dx = 0 ;and T has 1 as a nondegenerate eigenvalue, thenZ 1�1 �(x)~�(x� k) dx = �0;k 8k 2 Z :Proof De�ne ck = Z 1�1 �(x)~�(x� k)dx :We have ck = Z 1�1 0@Xm2Z am�(2x�m)1A0@Xn2Z ~an ~�(2x� 2k � n)1A dx



45= Xm;n2Z am~an Z 1�1 �(2x�m)~�(2x� 2k � n) dx= 12 Xm;n2Z am~an Z 1�1 �(x)~�(x+m� 2k � n) dx= 12 Xm;n2Z am~anc2k�m+n= 12 Xm;l2Z am~am+l�2kcl= Xl2Z tk;lcl ;i.e., Tc = c :Thus c is an eigenvector of the multiresolution matrix T with eigenvalue 1. Since 1 isa nondegenerate eigenvalue, and (� � � ; 0; � � � ; 0; 1; 0; � � � ; 0; � � �)0 is also an eigenvectorwith eigenvalue 1, it follows that c = 
(� � � ; 0; � � � ; 0; 1; 0; � � � ; 0; � � �)0, or ck = 
�0;k forsome constant 
. Using the argument similar to the one in Section 2.2.3, we will get
 = 1. So Z 1�1 �(x)~�(x� k) dx = �0;k ; 8k 2 Z :Based on the lemma, it is easy to check that for BCW-0, BCW-1, BCW-2, BCW-3,and BCW-4,  (x) and ~ (x) all constitute dual Riesz bases. A more general theoreticaldiscussion can be found in [38].3.4.6 Multiplication-Free Discrete Wavelet TransformThough we didn't expect it, it turned out that the scaling vectors of biorthogonalCoifman wavelet systems are all dyadic rationals, i.e., all the elements in the scalingvectors are of the form (2p + 1)=2q, for some p; q 2 Z. This is a really attractive fea-ture since we can therefore implement a very fast multiplication-free discrete wavelettransform on digital computers. It is one of the main advantage of biorthogonalCoifman wavelet systems over other widely used biorthogonal wavelet systems, suchas the Cohen-Daubechies-Feauveau 9-7 biorthogonal wavelet system (CDF-97) [7].



46Theorem 3.9 In a biorthogonal Coifman wavelet system of degree N ,the scaling vectors are dyadic rationals, i.e., 8k 2 Z, there must existp1; p2; q1; q2 2 Z, such thatak = 2p1 + 12q1 ; ~ak = 2p2 + 12q2 ;whenever ak or ~ak are nonzero.Proof It is clear that the addition, subtraction, or multiplication between twodyadic rationals is still a dyadic rational. Or we can say these three operations areclose in dyadic rationals. So all we need to prove is that ~a2k+1 is a dyadic rational,for all nonzero ~a2k+1. There are two possible cases.1. if N is even, N = 2n,~a2k+1 = (�1)k2k + 1 0@ 2n � 1n� 1 1A0@ 2nn+ k 1A 2n+ 124n�1 :Both 0@ 2n � 1n� 1 1A and 0@ 2nn + k 1A are integers. Thus it is su�cient to provethat (2k + 1) can divide 0@ 2n � 1n� 1 1A0@ 2nn + k 1A (2n + 1). All possible choicesfor ~a2k+1 being nonzero are �n � k � n. When k = �1; 0, or n, the proof istrivial. So �rst let's look at 0 < k < n.Recall that for two positive integers a; b,ad(a;b) j b! ;the function d(a; b) is de�ned byd(a; b) := 1Xk=1b bak c = b bac+ b ba2 c+ � � �+ b bak c+ � � �where b�c is the integer part of a real number. Since0@ 2n � 1n� 1 1A0@ 2nn+ k 1A (2n + 1) = (2n � 1)!(2n + 1)!(n � 1)!n!(n+ k)!(n� k)! ;it su�ces to show thatb2n � 12k + 1 c+b2n+ 12k + 1 c � b n� 12k + 1c+b n2k + 1c+b n+ k2k + 1c+b n � k2k + 1c+1 : (3:27)Assume n� k = t(2k + 1) + r, where t; r 2 Z; t � 0; 0 � r � 2k.



47� if r = 0, then n+ k = t(2k + 1) + 2k ;2n + 1 = (2t+ 1)(2k + 1) :So b2n + 12k + 1c = 2t+ 1 = b n� k2k + 1c+ b n + k2k + 1c + 1 :We know that b2n � 12k + 1 c � b n� 12k + 1c + b n2k + 1c ;Thus (3.27) follows immediately.� if 1 � r � k, then n = t(2k + 1) + (k + r) ;n� 1 = t(2k + 1) + (k + r � 1) ;2n � 1 = (2t+ 1)(2k + 1) + (2r � 2) :Thus b2n� 12k + 1c = 2t+ 1 = b n � 12k + 1c+ b n2k + 1c+ 1 :It implies (3.27).� if k + 1 � r � 2k, thenn+ k = (t+ 1)(2k + 1) + (r � 1) ;2n+ 1 = (2t+ 2)(2k + 1) + (2r � 2k � 1) :So b2n + 12k + 1c = 2t+ 2 = b n� k2k + 1c+ b n + k2k + 1c + 1 :Again, we get (3.27) from the above equality.Now suppose �n � k � �2. Set l = �k; 2 � l � n. We want to show thatb2n � 12l � 1 c+ b2n + 12l � 1 c � b n� 12l � 1c+ b n2l � 1c+ b n+ l2l � 1c+ b n� l2l � 1c+1 : (3:28)Assume n� l = t(2l � 1) + r, where t; r 2 Z; t � 0; 0 � r � 2l � 2.



48� if 0 � r � l� 2, then n = t(2l � 1) + (l + r) ;n� 1 = t(2l � 1) + (l + r � 1) ;2n � 1 = (2t+ 1)(2l � 1) + 2r :So b2n � 12l � 1 c = 2t+ 1 = b n� 12l � 1c+ b n2l � 1c+ 1 :And (3.28) follows.� if l � 1 � r � 2l � 3, thenn + l = (t+ 1)(2l � 1) + (r + 1) ;2n + 1 = (2t+ 2)(2l � 1) + (2r � 2l + 3) :So b2n+ 12l � 1 c = 2t+ 2 = b n+ l2l � 1c+ b n � l2l � 1c+ 1 :� if r = 2l � 2, then n+ l = (t+ 2)(2l � 1) ;2n+ 1 = (2t+ 3)(2l � 1) :So b2n+ 12l � 1 c = 2t+ 3 = b n+ l2l � 1c+ b n � l2l � 1c+ 1 :2. if N is odd, N = 2n � 1,~a2k+1 = (�1)k2k + 1 0@ 2n � 2n� 1 1A0@ 2n� 1n+ k 1A 2n� 124n�3 :Since ~a2k+1 = ~a�2k�1, it will be su�cient to only prove for the case 1 � k � n�2.Assume n� k � 1 = t(2k + 1) + r, where t; r 2 Z; t � 0; 0 � r � 2k.� if r = 0, then n = t(2k + 1) + (k + 1) ;2n� 1 = (2t+ 1)(2k + 1) ;i.e., (2k + 1)j(2n � 1) :



49� if 1 � r � 2k, since0@ 2n� 2n� 1 1A0@ 2n � 1n+ k 1A = (2n � 2)!(2n� 1)!(n� 1)!(n� 1)!(n+ k)!(n� k � 1)! ;we will prove the inequalityb2n � 22k + 1c+b2n � 12k + 1 c � b n� 12k + 1c+b n� 12k + 1c+bn� k � 12k + 1 c+b n + k2k + 1c+1 :i. 1 � r � k, then n� 1 = t(2k + 1) + (k + r) ;2n� 2 = (2t+ 1)(2k + 1) + (2r � 1) :So b2n � 22k + 1 c = 2t+ 1 = b n� 12k + 1c+ b n� 12k + 1c + 1 :ii. k + 1 � r � 2k, thenn+ k = (t+ 1)(2k + 1) + r ;2n� 1 = (2t+ 2)(2k + 1) + (2r � 2k � 1) :So b2n � 12k + 1 c = 2t+ 2 = bn� k � 12k + 1 c + b n+ k2k + 1c+ 1 :3.4.7 Convergence to Sinc Wavelet SystemThe sinc wavelet system is a basic wavelet system whose scaling vector fasinck ; k 2 Zgis de�ned by asinc2k = �0;k ; asinc2k+1 = (�1)k2(2k + 1)� :It had been a problem for some time to �nd a sequence of scaling functions withcompact supports which approximate the function sinc(�x) = sin�x�x , the scaling func-tion of the sinc wavelet system. This problem is important because of the specialrelation of the sinc function to signal processing applications. The family of biorthog-onal Coifman wavelet systems just provides a very suitable candidate which also hasgrowing smoothness.



50Theorem 3.10 Suppose f~aNk ; k 2 Zg to be the synthesis scaling vectorof the biorthogonal Coifman wavelet system of degree N . ThenlimN!1 �������~aN�� �asinc�������l2 = limN!10@Xk2Z �~aNk � asinck �21A1=2 = 0 :Before proving Theorem 3.10, we �rst prove that ~aN converges to asinc termwise.Lemma 3.8 Assume the same condition as in Theorem 3.10, thenlimN!1 ~aNk = asinck :Proof From the de�nition, we only need to checklimN!1 ~aN2k+1 = asinc2k+1 : (3:29)First let's look at the case when N is even, N = 2n. Assume jkj < n (otherwise wecan choose a larger N), we have~aN2k+1 = (�1)k2k + 1 0@ 2n � 1n � 1 1A0@ 2nn + k 1A 2n + 124n�1= (�1)k2k + 1 � (2n� 1)!(2n+ 1)!24n�1(n � 1)!n!(n� k)!(n+ k)!We want to show thatlimn!1 (2n � 1)!(2n+ 1)!24n�1(n� 1)!n!(n� k)!(n+ k)! = 2� : (3:30)Recall that Stirling's formula stateslimn!1 n!p2�nn+1=2e�n = 1So limn!1 (2n� 1)!(2n+ 1)!24n�1(n� 1)!n!(n� k)!(n+ k)!= limn!1 (2n � 1)2n�1=2(2n + 1)2n+3=2e�124n�(n� 1)n�1=2nn+1=2(n� k)n�k+1=2(n+ k)n+k+1=2



51= limn!1 e�124n� �2n � 1n� 1 �n�1=2 �2n + 1n �n+1=2 �2n� 1n� k �n� �2n + 1n+ k �n+1  n� kn + k!k�1=2= limn!1 e�124n� � 2n�1=2e1=2 � 2n+1=2e1=2 � 2ne1=2 � 2n+1e�1=2 � 1= 2�We have used limx!1�1 + 1x�x = e ; limx!1�1� 1x�x = e�1in the third step. Then (3.30) is proved.When N is odd, N = 2n� 1, the ratio~aN2k+1~aN�12k+1 = 2n� 12n + 2k �! 1 as N !1Then (3.29) also holds when N is odd.The next weapon we need is Lebesgue's Dominated Convergence Theorem ofl2(R).Theorem 3.11 (Lebesgue's Dominated Convergence Theorem) Assumefc1kg; fc2kg; � � � are a family of l2(R) sequences with the l2 norm jj(ck)jjl2 =(Pk c2k)1=2. Suppose (dk) 2 l2(R), and 8k 2 Z; dk � 0. Iflimn!1 cnk exists for all k 2 Z ;and jcnk j � dk for all k 2 Z :Then (limn!1 cnk)k2Z 2 l2(R) and��������� limn!1 cnk�k2Z��������l2 = limn!1 jj(cnk )jjl2 :Proof of Theorem 3.10 SincelimN!1(~aNk � asinck ) = 0 for all k ;



52to apply Theorem 3.11, we just need to �nd a l2(R) dominating sequence fdk; k 2 Zgsuch that j~aNk � asinck j � dk for all k :If N is even, N = 2n, we can assume jkj � n since otherwise ~aN2k+1 = 0 is alwaysbounded. Note that (n� k)!(n+ k)! � (n!)2then j~aN2k+1j = ����� (2n� 1)!(2n + 1)!(2k + 1)24n�1(n � 1)!n!(n� k)!(n+ k)!������ ����� (2n� 1)!(2n+ 1)!(2k + 1)24n�1(n � 1)!(n!)3 �����Set k = 0 in (3.30), limn!1 (2n � 1)!(2n + 1)!24n�1(n� 1)!(n!)3 = 2�So for N large enough, (2n � 1)!(2n+ 1)!24n�1(n� 1)!(n!)3 � 1j~aN2k+1j � ���� 12k + 1 ����If N is odd, N = 2n � 1, since(n+ k)!(n� 1� k)! � (n� 1)!n! ;we have j~aN2k+1j = ������ 12k + 1 0@ 2n � 2n � 1 1A0@ 2n � 1n+ k 1A 2n� 124n�3 ������= ����� ((2n� 1)!)224n�3(2k + 1)((n� 1)!)2(n+ k)!(n� 1� k)!������ ����� ((2n � 1)!)224n�3(2k + 1)((n� 1)!)2(n� 1)!n!�����= ���� 12k + 1~aN1 ����Because limN!1 ~aN1 = asinc1 = 2� ;



53it follows that ~aN1 � 1 for N large enough :Then j~aN2k+1j � ���� 12k + 1 ���� :Set d2k+1 = ���� 12k + 1 ����+ jasinc2k+1j � ���� 22k + 1 ���� ; d2k = 0we have (dk)k2Z 2 l2(R) and j~aNk � asinck j � dk ;By Theorem 3.11 and Lemma 3.8,limN!1 ������~�N � �sinc������l2 = 0 :The theorem follows.The Mallat Algorithm only involves scaling vectors. Using the Cauchy Inequality,one can show that the discrete wavelet transform of biorthogonal Coifman waveletsystems converge to the discrete wavelet transform of the sinc wavelet system.Corollary 3.2 If fsk; k 2 Zg is a l2(R) sequence, (Pk s2k)1=2 <1, thenlimN!1DWT(BCW-N; (sk)) = DWT(sinc; (sk)) :3.5 ConclusionsIn this chapter, we have studied various properties of biorthogonal Coifman waveletsystems. In practice these properties really show why biorthogonal Coifman waveletsystems are considered one of the best wavelet systems available today. The imagecoding evaluation of biorthogonal Coifman wavelet systems is included in Section 5.8.In [55], a generalization of biorthogonal Coifman wavelet systems is discussed. Init, the condition that the analysis wavelet function and synthesis wavelet functionmust have the same degree of vanishing moments is relaxed. Interested readers mayrefer to that paper.



54Chapter 4Orthogonal Coifman Wavelet SystemsAs we know, orthogonal wavelet systems not only provide orthonormal bases of L2(R),but also provide unconditional bases of Lp(R), for 1 < p < 1, while biorthogonalones can't. And orthogonal wavelet transform will preserve the L2 norm. Thus we canhave exact error estimates in the wavelet decomposition domain. So only orthogonalwavelet systems can be included in the wavelet packets, while biorthogonal ones can't.These are several advantages of orthogonal wavelet systems over biorthogonal ones.One main defect of orthogonal wavelet systems is that they can't be symmetric, exceptfor the Haar wavelet systems.Orthogonal Coifman wavelet systems were �rst studied by I. Daubechies in [10](she called these wavelet systemsCoi
ets). In [10] a method to construct these waveletsystems of even degrees (which will be odd degrees in our de�nition, see below) wasproposed and the general existence problem is still open. Orthogonal Coifman waveletsystems seemsmore \symmetric", more smooth than the Daubechies wavelet systems.In this chapter we will study these orthogonal Coifman wavelet systems.4.1 De�ntion of Orthogonal Coifman Wavelet SystemsSimilar to biorthogonal Coifman wavelet systems, orthogonal Coifman wavelet sys-tems are compactly supported orthogonal wavelet systems with vanishing momentsequally distributed for the scaling function and wavelet function.De�nition 4.1 An orthogonal wavelet system with compact support iscalled an orthogonal Coifman wavelet system (in short, OCW) of degreeN if the vanishing moments of the scaling function �(x) and the waveletfunction  (x) are both of degree N , i.e.,Momp(�) = Z 1�1 xp�(x) dx = �0;p; for p = 0; � � � ; N ;Momp( ) = Z 1�1 xp (x) dx = 0; for p = 0; � � � ; N :



554.2 Vanishing Moments and Wavelet ApproximationLemma 3.4 states that the vanishing moment conditions on the scaling function andwavelet function are equivalent to those on the scaling vectors fakg. So Theorem 3.2holds for orthogonal Coifman wavelet systems. Since these are orthogonal systems,we can prove it in a more direct way.Theorem 4.1 For an orthogonal Coifman wavelet system of degree Nwith the scaling function �(x), if f(x) 2 CN;10 (R), de�ne, for j 2 Z,f j(x) := 2�j=2 Xk2Z f  k2j!�j;k(x) ;where �j;k(x) = 2j=2�(2jx� k). Then������f(x)� f j(x)������L2 � C2�j(N+1) ;where C depends only on f(x) and the scaling vector fakg.Proof In an orthogonal wavelet system with the scaling function �(x) and waveletfunction  (x), we have������f � f j ������L2 = ������f � P j(f)������L2 + ������P j(f) � f j ������L2 ;where the wavelet orthogonal projectionP j(f) = Xk2Z�Z 1�1 f(x)�j;k(x) dx� � �j;k(x) :We will prove ������f � P j(f)������L2 � C2�j(N+1) ; (4:1)and ������P j(f)� f j ������L2 � C2�j(N+1) : (4:2)By the orthonormality of the wavelet system,������f � P j(f)������L2 = ������������Xl�j Xk2Z < f; l;k >  l;k������������L2 = 0@Xl�j Xk2Z (< f; l;k >)21A1=2 ;



56where  l;k = 2l=2 (2lx � k). Using the vanishing moments of the wavelet function (x),< f; l;k > = Z 1�1 f(x) � 2l=2 (2lx� k) dx= 2�l=2 Z 1�1 f  x+ k2l ! (x) dx= 2�l=2 Z 1�1 0@f  k2l!+ f (1)  k2l! x2l + f (2) � k2l�2! � x2l�2 + � � �+ f (N�1) � k2l�(N � 1)! � x2l�N�1 + f (N) � �k+(1��)x2l �N ! � x2l�N1A (x) dx= 2�l=2 Z 1�1 f (N) � �k+(1��)x2l �N ! � x2l�N (x) dx= 2�l(N+ 12 )N ! Z 1�1 f (N) �k + (1 � �)x2l !xN (x) dx= 2�l(N+ 12 )N ! Z 1�1  f (N)  �k + (1 � �)x2l !� f (N)  k2l!!xN (x) dx ;where 0 � � � 1. Now using the same estimate as in the proof of Theorem 3.2, onecan show that ������f � P j(f)������L2 � C2�j(N+1) ;where C depends only on f(x) and  (x).For (4.2), we have������P j(f)� f j ������L2 = ������������0@Xk2Z < f; �j;k > �j;k(x)1A� 0@2�j=2 Xk2Z f  k2j !�j;k(x)1A������������L2= ������������Xk2Z < f; �j;k > � 2�j=2f  k2j!!�j;k(x)������������L2= 0@Xk2Z < f; �j;k > � 2�j=2f  k2j !!21A1=2Using the vanishing moments of �(x),< f; �j;k > = Z 1�1 f(x) � 2j=2�(2jx� k) dx= 2�j=2 Z 1�1 f  x+ k2j !�(x) dx



57= 2�j=2 Z 1�1 0@f  k2j !+ f (1)  k2j ! x2j + f (2) � k2j �2! � x2j�2 + � � �+ f (N�1) � k2j �(N � 1)! � x2j �N�1 + f (N) � �k+(1��)x2j �N ! � x2j �N1A�(x) dx= 2�j=2f  k2j !+ 2�j=2 Z 1�1 f (N) � �k+(1��)x2j �N ! � x2j �N�(x) dx ;where 0 � � � 1. So< f; �j;k > � 2�j=2f  k2j ! = 2�j=2 Z 1�1 f (N) � �k+(1��)x2j �N ! � x2j �N�(x) dx ;������P j(f)� f j������L2 � C2�j(N+1) :Combining (4.1) and (4.2), the theorem follows.The above proof gives us insight of the di�erent roles of the vanishing moments ofthe scaling function �(x) and wavelet function  (x). The vanishing moments of  (x)will reduce the error in the wavelet orthogonal projection, or the distance from f(x)to the projection space, which is spanned by f�j;k(x); k 2 Zg. The vanishing momentsof �(x), on the other hand, will reduce the distance between the wavelet orthogonalprojection and the wavelet sampling approximation in the projection space.4.3 Existence and ConstructionA big problem concerning orthogonal Coifman wavelet systems is the existence prob-lem. Till now we still don't know whether orthogonal Coifman wavelet systems existfor an arbitrary degree. I. Daubechies discussed the construction of odd degrees witha preimposed forms. But even for the odd degrees, the existence problem is notsolved. Here we propose a numerical method starting with biorthogonal Coifmanwavelet systems.Biorthogonal Coifman wavelet systems and orthogonal Coifman wavelet systemsare connected via the same vanishing moments imposed on scaling functions andwavelet functions. The only di�erence between these two is that the quadratic con-dition in orthogonal Coifman wavelet systemsXk2Z akak+2l = 2�0;l ; 8l 2 Z



58is replaced by the bilinear conditionXk2Z ak~ak+2l = 2�0;l ; 8l 2 Z :How to construct orthogonal Coifman wavelet systems from biorthogonal Coifmanwavelet systems is the problem we are tackling on. One of the most powerful methodto approximation a solution of some system with a known starting point is the well-known Newton's method. One drawback of Newton's method is that even thoughnumerically Newton's iterates converge to some point, we still can't assert the limitwill be exactly a solution. By utilizing a fundamental result due to L. Kantorovich,the existence for some orthogonal Coifman wavelet system can be proved theoretically.Theorem 4.2 (Newton-Kantorovich Theorem) AssumeD is a bounded,open subset of Rn, f : D ! Rn is C1 on a convex set D0 � D such thatjjf 0(x)� f 0(y)jj � 
jjx� yjj ; 8x; y 2 D0 :Suppose that there exists an x0 2 D0 such that jj (f 0(x0))�1 jj � � and� = �
� � 1=2, where � � jj (f 0(x0))�1 f(x0)jj. Sett� = (�
)�1[1� (1� 2�)1=2] ; t�� = (�
)�1[1 + (1� 2�)1=2] ;and assume that B(x0; t�) � D0. Then the Newton iteratesxk+1 = xk � (f 0(xk))�1 f(xk) ; k = 0; 1; � � � ;are well-de�ned, remain in B(x0; t�) and converge to a solution x� off(x) = 0 which is unique in B(x0; t��) \ D0. Here B(x0; r) denotes theopen ball of radius r about the point x0, and B(x0; r) is the close ball.The basic idea of the proof is to construct a majorizing sequence for xk. For acomplete proof and some applications of the Newton-Kantorovich theorem, see [26]and [27].The Newton-Kantorovich Theorem is just one example that one can get theoreticalresults from numerical computation. In our case, this theorem will enable us to provethe existence of orthogonal Coifman wavelet systems of degrees up to 9.It is clear from the de�nition that the degree 0 orthogonal Coifman wavelet systemis exactly the Haar wavelet system with fa0 = 1; a1 = 1g. Next we will go fororthogonal Coifman wavelet system with higher degrees.



59a. N = 1b. N = 2The signi�cance of the Newton-Kantorovich Theorem is that even if we don't knowthe existence of the solution of f(x) = 0, we can still apply the Newton's iterationmethod. If the numerical results are good enough (i.e., the conditions of the Newton-Kantorovich Theorem are satis�ed), then it follows that f(x) = 0 has a solution andthe numerical results will give a fast approximation.Thus we propose our Newton's method algorithm to get orthogonal Coifmanwavelet systems, starting from biorthognal Coifman wavelet systems. Note that sincethe vanishing moment conditions are just linear equations on the scaling vector fakg,every Newton iterate xk will always satisfy the vanishing moment conditions.Newton's method algorithm:1. Take the synthesis scaling vector of the biorthogonal Coifman wavelet systemof degree N as the initial point x0.2. Compute Newton iterates starting from x0.3. If for some xk0, the Newton-Kantorovich condition
 � jj (f 0(xk0))�1 jj � jj (f 0(xk0))�1 f(xk0)jj � 1=2is satis�ed, where 
 is the Lipschitz constant of f 0(x), then de�ne y0 = xk0 .4. An error estimate is needed if we are trying to prove the above inequality fromnumerical results.5. From the Newton-Kantorovich Theorem, the Newton iterates starting from y0converge to a solution of f(x) = 0.6. Check that 1 is not a degenerate eigenvalue of the corresponding multiresolutionoperator T�. Then the iterate yk we choose will be a good approximation to thescaling vector of the orthogonal Coifman wavelet system of degree N .Based on the above algorithm, here we give the scaling vectors of orthogonalCoifman wavelet systems of degree through 0 to 9.Some illustrations of orthogonal Coifman wavelet systems are included in Figure4.1 and 4.2
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614.4 ConclusionsIn the chapter we have seen that the the vanishing moments of the scaling functionand the wavelet function play di�erent roles in the wavelet sampling approximation.Depending on the speci�c application, we can distribute more vanishing moments onthe scaling function, or more vanishing moments on the wavelet function, or let themhave the same vanishing moments. The third case is much more valuable, due to thewavelet approximation theorem. Also a numerical method is proposed to constructorthogonal Coifman wavelet systems. Usually it is impossible to verify a Cauchy se-quence by numerical computation. But with the Newton-Kantorovich Theorem, wecan prove the existence of orthogonal Coifman wavelet systems by numerical compu-tation and get a good approximate solution by the Newton's method.



62Chapter 5Image CodingThe advent of multimedia computing has led to an increased demand for digitalimages. To make widespread use of digital imagery practical, some form of datacompression must be used, since the storage and manipulation of these images intheir raw form is very expensive. Thus image data compression has been widely usedin still images, medical imaging, seismic waves, synthetic aperture radar images, FBI�ngerprints, etc. It has been a hot topic both in research and in application for a longtime. In the last ten years, the wavelet analysis has become a cutting-edge technologyin this area. Since the wavelet transform has very good localization properties in boththe spatial domain and the frequency domain, it can handle non-stationary signalsvery e�ciently and provide e�cient compression algorithms.In this chapter, we will present our work in image compression. After brie
yviewing some background material, we will �rst study two of the best image com-pression algorithms. One is J. Shapiro's embedded zerotree wavelet algorithm. Themost signi�cant contribution of Shapiro's work is that it is a whole new idea andsparkled lots of other interesting compression algorithms. Another one we will lookat is A. Said and W. A. Pearlman's codetree algorithm. This algorithm is a combi-nation of Shapiro's algorithm and their set partitioning sorting algorithm. Motivatedby these three people's nice work, we propose a new embedded wavelet-based imagecompression algorithm, the Wavelet-Di�erence-Reduction algorithm. It combines thediscrete wavelet transform, di�erential coding, binary reduction, ordered bit planetransmission and adaptive arithmetic coding. After the detailed description of thisnew algorithm, we will compare it with the other two studied early this chapter andsee various applications of the new algorithm. And we propose a novel method toprocess image data in the compressed wavelet domain.



635.1 Some BackgroundA typical transform image coder consists of three subsystems: a transform subsys-tem, a quantization subsystem, and an entropy coding subsystem. In the transformsubsystem, the input image data is stored in another form by some invertible trans-formation. The purpose of the transform subsystem is to remove the redundancies inthe original image data to a large extend. In the quantization subsystem, the quan-tizer (scalar quantizer or vector quantizer) allocates di�erent number of bits for therepresentation of di�erent transform coe�cients. The quantization is the only stepthat some information of the original image data will be lost. The entropy codingsubsystem is a lossless data compression process on the stream of quantized transformcoe�cients. Typical choices of the lossless data compression algorithms are Hu�mancoding, or arithmetic coding [57].Right after I. Daubechies's work on compactly supported orthogonal wavelet sys-tems [8], wavelet analysis has been immediately applied to image compression andshowed its big potential, since wavelet transform can remove the spatial and spectralredundancies of the image data pretty well. Thus it becomes the ideal choice forthe transform subsystem. The main di�erence between di�erent wavelet-based imagecoder is in the quantization subsystem. We can choose either scalar quantizer or vec-tor quantizer. And in each quantizer, lots of di�erent methods have been proposedto improve the compression performance.Embedded image coding is a way to successively approximate the original image.At the beginning of the bit steam, the embedded code contains all lower rate (herethe rate is the bit rate, or the number of bits per pixel) codes. As the encodingcontinues, more and more �ne detail will be sent to the embedded code, in the orderof importance. The word \embedded" means that all the information in the lowerrate codes is contained in the higher rate codes. As J. Shapiro pointed out in his paper[45], embedded coding is similar in spirit to binary �nite precision representation ofreal numbers. And using embedded coding, the encoder can stop at any point whensome target rate or distortion metric is met. Also the decoder can stop at any pointand give a reconstruction image, as if the encoder had terminated its encoding jobat the same lower rate. Two examples of embedding image codings are J. Shapiro'sembedded zerotree wavelet algorithm [45] and A. Said and W. A. Pearlman's codetreealgorithm [43], which we will study next.



645.2 Shapiro's Embedded Zerotree Wavelet AlgorithmIn his celebrated paper [45], J. Sharipo presented the embedded zerotree waveletalgorithm (EZW). First he de�ned a spatial orientation tree structure. In a waveletdecomposition domain� with N scales, except for the high-pass coe�cients at the�nest scale, HL1; LH1;HH1, and the low-pass coe�cients at the coarsest scale, LLN ,every coe�cient at a given scale is related to a set of four coe�cients at the next �nerscale of similar orientation. The coe�cient at the coarse scale is called the parent andthe four coe�cients corresponding to the same spatial location at the next �ner scaleof same orientation are called children. For every coe�cient in LLN , we de�ne threecoe�cients, from HLN ; LHN ;HHN , respectively, with the same spatial location, asits children. A parent-child relationship is illustrated in Figure 5.1. A scanning of thecoe�cients is performed in such a way that no child node is scanned before its parent.A typical scanning pattern is indicated in Figure 5.2. The scan begins at LLN , thenHLN ; LHN ;HHN , at which point it moves on to scaleN�1, etc. A wavelet coe�cientx is de�ned as insigni�cant with respect to a threshold T if jxj < T , otherwise x issaid to be signi�cant. And x is an element of a zerotree if x and all its descendantsare insigni�cant. An element x is called a zerotree root if it is an element of zerotreebut its parent is not an element of zerotree. Moreover, x is said to be an isolated zeroif x is insigni�cant but has some signi�cant descendant.With these settings, we are ready to encode the image using EZW. First select athreshold T such that jxjj < 2T for all the wavelet transform coe�cients xj, and forsome j0; T � jxj0 j: Initially put all the wavelet transform coe�cients on the dominantlist, with the order shown in Figure 5.2. We begin with the dominant pass. For eachxj on the dominant list, if xj is signi�cant with respect to T , then output its signand move xj to the subdominate list. If xj is insigni�cant, then output a symbol (say\I") if it is an isolated zero, or output another symbol (say \Z") if it is a zerotreeroot. In other cases, nothing will be output since xj is predictably insigni�cant. Thedominant pass is followed by a subdominate pass. First, the threshold T is dividedby 2. And the re�nement value (the meaning of re�nement values will be given inSection 5.4) of xj in the subdominate list with respect to T will be output. Thesubdominate pass is followed by the dominant pass of the next round. And the cyclekeeps going until some target rate is met.�We assume a two-dimensional setting with wavelets scaled by power of 2, although this is notessential for these algorithms.
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Figure 5.1 Parent-Child Dependencies in theWavelet Decomposition Domain with 3 Sales.The EZW takes advantage of the predictably insigni�cant coe�cients and theadaptive arithmetic coding can encode the symbol stream very e�ciently.5.3 Said and Pearlman's Codetree AlgorithmA. Said and W. A. Pearlman introduced a set partitioning sorting algorithm anddeveloped their state-of-the-art Said-Pearlman-Codetree algorithm (SPC) [43] afterShapiro's work. Using the same spatial orientation tree structure, they de�ned threeordered lists, LIS, list of insigni�cant sets, LIP, list of insigni�cant pixels, and LSP,list of signi�cant pixels. LIS is the list of descendants sets, with two types A andB, and each element of LIS is represented by the ancestor. Type A is a set of alldescendants of some coe�cient; and type B is a set of all descendants excludingits children, so it looks like the union of four (or three) elements in A, yet it isn'tgenerated in this manner.
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HL1LH2 HH2HL2LL3LH3 HL3HH3-����	 -�������	 -�������������	 -Figure 5.2 Scanning Order of the WaveletTransform Coe�cients with 3 Scales.Initially LSP is empty, and LIP and LIS are equal to LLN . In the sorting pass,all xj in LIP will be checked for signi�cance, and the test result will be output. Whensome xj is found signi�cant, move it to LSP and output its sign right after the testresult. Then for xj in LIS, if it is type A, i.e., the set of all descendants of xj, checkif xj has any signi�cant descendants and output the result. If yes, check the childrenof xj and output the test result. If some child is signi�cant, move the child to LSPand output its sign. If some child is not signi�cant, move the child to LIP. If xj hasother descendants than children, i.e., xj is at the third scale level or even coarser,move xj to type B. (That's where type B comes from.) For xj in LIS with type B,if it has signi�cant descendants (not including its children), move xj from LIS andmove all its children to LIS as type A. After the sorting pass, we have a re�nementpass. In the re�nement pass, the re�nement values of elements in LSP except thoseincluded in the sorting pass of this round (since these coe�cients' re�nement valuesmust be \1"), will be output. Then the threshold is divided by 2, and it goes backto the sorting pass and another around starts.



67In SPC, the set partitioning sorting algorithm is very e�cient such that the symbolstream can be represented by using only two symbols, \0" and \1". (Even the positiveand negative signs can be represented by \0" and \1".) Without arithmetic coding,its performance is already superior to EZW.5.4 Wavelet-Di�erence-Reduction AlgorithmIn this section, we propose a new embedded image coding algorithm. Similar to EZWand SPC, it consists of two parts, a sorting pass and a re�nement pass. In the sortingpass, we will show how to use reduced indices of wavelet transform coe�cients toencode the positions of signi�cant coe�cients directly. As in Section 5.2, a wavelettransform coe�cient x is de�ned as signi�cant with respect to a threshold T if jxj � T ,otherwise x is said to be insigni�cant.5.4.1 Di�erential CodingDi�erential coding [18] takes the di�erence of values of successive elements. It usuallyproduces a set of smaller values, compared with the original set. For example, if theelements of a set S are preordered in a monotonically increasing order, then thedi�erential coding result S 0 will be a set with smaller values. For example, ifS = f1; 2; 5; 36; 42g ;then S 0 = f1; 1; 3; 31; 6g :As it is clear, S 0 contains relatively smaller values than S.We will call S 0 the di�erence set of S. And we make the convention that thevalue of the �rst element will not be changed in di�erential coding. Meanwhile it isstraightforward to retrieve back the original set S from the di�erence set S 0 by takingthe partial sum of S 0. So we can say that S and S 0 contain the same informationthough S 0 will be much easier for transmission and storage.5.4.2 Binary ReductionBinary reduction [15] is one of the representation of positive integers, with the shortestrepresentation length. By de�nition, the binary reduction removes all the leading\0" bits and the �rst \1" in the binary representation of a number, or equivalently,



68removes the most signi�cant binary digit. For example, to get the binary reductionof 19, since 1910 = 100112 ;where the subindex 10 means the decimal representation, and the subindex 2 meansthe binary representation, we have the binary reduction of 19 is 0011.When we have a set S of positive integers, we can apply binary reduction to eachelement to get the reduction set R(S) of S. For example, ifS = f1; 1; 3; 31; 6g ;then the reduction set R(S) = f; ; 1; 1111; 10g : (5:1)Note that there are no coded symbols before the �rst two commas \," in R(S). Sinceall elements in S are positive integers, the inverse operation of the binary reductionwill be adding a \1" as the most signi�cant bit in the binary representation. Applyingthis inverse operation on the reduction set R(S) will produce the original set S.Again, the two sets S and R(S) will contain the same information while R(S) willrequire less space in digital computers. In practice, one will need some end of messagesymbol to separate di�erent elements in the reduction set R(S), like the comma \,"in (5.1).5.4.3 Coding the Signi�cant MapsThe following problem is considered, how to code the indices of signi�cant wavelettransform coe�cient, or the signi�cant maps, in an e�cient way? Both J. Shapiro'sembedded zerotree wavelet algorithm and A. Said and W. A. Pearlman's codetreealgorithm use spatial orientation tree structures to implicitly locate the signi�cantcoe�cient, here we present a direct approach based on di�erential coding and binaryreduction.Assume S is the index set of signi�cant wavelet transform coe�cients. We can alsoassume the elements of S are ordered in a monotonically increasing order. To code S,the �rst step, of course, is the di�erential coding. After di�erential coding, we get thedi�erence set S 0. From S 0, we can get back S. Can the di�erence set S 0 be furthercoded? Well, since S 0 is a set of positive integers (note that S is monotonicallyincreasing), we can apply the binary reduction on S 0 to produce the reduction set



69R(S 0). Because R(S 0) and S 0 contain the same information, the index set S can bederived by decoding R(S 0). So we will R(S 0) to represent S. For example, ifS = f1; 2; 5; 36; 42g ; (5:2)then we have S 0 = f1; 1; 3; 31; 6g ;and R(S 0) = f; ; 1; 1111; 10g :The coding result of the index set f1; 2; 5; 36; 42g is f; ; 1; 1111; 10g. It is a verycompact representation of the indices.Actually the concept of combining the di�erential coding and the binary reductionis a fairly general concept and not speci�c to the wavelet decomposition domain. Forexample, it can be applied to the Partition Priority Coding (PPC) [23], and one wouldexpect some possible improvement in the image coding results.5.4.4 Outline of the AlgorithmWith the di�erential coding and binary reduction, the index j of a signi�cant wavelettransform coe�cient can be coded very e�ciently. And we call the action of thedi�erential coding and binary reduction on wavelet transform coe�cients Wavelet-Di�erence-Reduction (in short WDR). We now formulate our WDR image compres-sion algorithm using this notion of Wavelet-Di�erence-Reduction. We will use thelanguage \sorting pass" and \re�nement pass" from [43].After taking the discrete wavelet transform of an image, all wavelet transformcoe�cients will be ordered from coarser scale to �ner scale, exactly the same orderingas in Figure 5.2. In an N scale decomposition, it will be LLN ;HLN ; LHN ;HHN ,then HLN�1; LHN�1;HHN�1; � � � ;HL1; LH1, and HH1. This order is based on thehypothesis that more signi�cant wavelet transform coe�cients are expected to appearin the coarser scale, and statistically this hypothesis is true in almost all the cases.Also this is the natural order of wavelet transform coe�cients in the context of signalprocessing. Three ordered lists of wavelet transform coe�cients are de�ned, LSC(list of signi�cant coe�cients), LTP (a temporary list, for the signi�cant coe�cientsfound in a given sorting pass round), and LIC (list of insigni�cant coe�cients).Initially both LSC and LTP are empty, and LIC contains all the wavelet transformcoe�cients, with the order as shown in Figure 5.2. And the initial threshold T is



70chosen such that jxjj < 2T for all the wavelet transform coe�cients xj, and for somej0, jxj0j � T . Output the initial threshold T .First we have a sorting pass. In the sorting pass, all signi�cant coe�cients in LICwith respect to T will be moved out and put into LTP. Let S be the indices (in LIC)of these signi�cant coe�cients. Output the reduction set R(S 0) of the di�erence setof S. Instead of using \," as the end of message symbol to separate di�erent elementsin R(S 0), we will take the signs (either \+" or \�") of these signi�cant coe�cients asthe end of message symbol. For example, if S = f1; 2; 5; 36; 42g as in (5.2), and thesigns of these four signi�cant coe�cients are \+�++�", then the encoding outputR(S 0) will be \+� 1+1111 +10�". Then update the indexing in LIC, for example,if x3 is moved to LTP, then all coe�cients after x3 in LIC will have their indicessubtracted by 1, and so on.The sorting pass is followed by a re�nement pass. In the re�nement pass, an addi-tional bit of precision of all the coe�cients in LSC will be obtained. Or equivalently,the width of the uncertainty interval of coe�cients in LSC will be cut in half. Beforethe re�nement pass, the uncertainty interval of coe�cients in LSC is [0; 2T ). Duringthe re�nement pass, those coe�cients in LSC with magnitude falling in [0; T ) willhave the re�nement value \0", and those in LSC with magnitude falling in [T; 2T )will have the re�nement value \1". And these re�nement values \0" or \1" will bethe output. For example, if the magnitude of a coe�cient in LSC is known to bein [32; 64), then it will be decided at this stage whether it is in [32; 48) or [48; 64).And a \0" symbol will indicate it is in the lower half [32; 48), while a \1" symbol willindicate it is in the upper half [48; 64). Output all these re�nement values \0" and\1". Note that for the �rst round, there will be no output, since those signi�cantcoe�cients just found in the sorting pass are all in LTP, and LSC is still empty.Then append LTP to the end of LSC, LSC = LSC [ LTP. Reset LTP to theempty set. And T is divided by 2. Another round begins with the sorting pass.The adaptive arithmetic coding [57] is used on the resulting symbol stream in thesorting pass and re�nement pass for each round. When the given rate or distortionmetric is met, the encoding stops.To make the above algorithm more clear, we will use an example to illustrate thesteps in the WDR algorithm. Only the symbol stream before adaptive arithmeticcoding is shown. A 3-scale wavelet transform of an 8�8 image is borrowed from [45].The array of values is shown in Figure 5.3. The largest wavelet transform coe�cientmagnitude is 63, and we will choose T = 32 as the initial threshold.



7163 -34 49 10 7 13 -12 7-31 23 14 -13 3 4 6 -115 14 3 -12 5 -7 3 9-9 -7 -14 8 4 -2 3 2-5 9 -1 47 4 6 -2 23 0 -3 2 3 -2 0 42 -3 6 -4 3 6 3 65 11 5 6 0 3 -4 4Figure 5.3 Example of 3-scale Wavelet Transform of an 8 � 8 Image.In the �rst round, during the sorting pass, there are four signi�cant coe�cients,63;�34; 49, and 47, with the indices 1, 2, 5, and 36. So S = f1; 2; 5; 36g. Nowapply the di�erential coding and binary reduction, we get R(S 0) = f; ; 1; 1111g. Thesign of a signi�cant coe�cient will be followed by its reduced index, so the resultingsymbol stream will be \+ � 1 + 1111+". There is no \0" or \1" preceding th �rst\+", which means its reduced index is nothing, then we can know its index di�erencewill be 1. Also for the �rst \�", we can know the index di�erence for the secondsigni�cant coe�cient is 1. And for the second \+", taking the inverse of binaryreduction operation, it will produce 3 from the coded symbol \1". Thus the indexdi�erence will be 3. And so on. When updating the indices in LIC, x3 = �31; x4 = 23will have the new indices 1 and 2, since 63 and �34 are all moved out. The wavelettransform coe�cients after 49 and before 47 will have their indices subtracted by 3,those after 47 will have their indices subtracted by 4. Now LTP = f63;�34; 49; 47g.Since LSC is empty for this round, there will be no output for re�nement values.And LSC = LSC [ LTP = f63;�34; 49; 47g, and we reset LTP to the empty set.At T = 32, all four coe�cients in LSC have their magnitudes in the interval [32; 64),



72and we will take the center of this interval as their reconstruction values. Thus, thereconstruction values of these four signi�cant coe�cients will be f48;�48; 48; 48g.Then T is divided by 2, T = 32=2 = 16. The second round begins.In the second round, there are two signi�cant coe�cients, �31, and 23, with theindices 1, and 2. Note that these are the updated indices. We have S = f1; 2g, andR(S 0) = f; ; g. The symbol stream will be \�+", with LTP = f�31; 23g. Thenupdating the indices in LIC, in this case, all indices are subtracted by 2. In there�nement pass LSC = f63;�34; 49; 47g. The magnitudes of these four coe�cientsare all in [32; 64), and they will be re�ned to an additional bit of precision, i.e., either in[32; 48) or in [48; 64). The uncertainty interval is [0; 32), and those magnitudes fallingin [0; 16) will have the re�nement values \0", and those falling in [16; 32) will have there�nement values \1". Since 63�32 = 31 > 16, the re�nement value for 63 is 1; j�34�(�32)j = 2 < 16, the re�nement value for -34 is 0; 49� 32 = 17 > 16, the re�nementvalue for 49 is 1; 47 � 32 = 15 < 16, the re�nement value for 47 is 0. The symbolstream will be \1010". Now LSC = LSC [ LTP = f63;�34; 49; 47;�31; 23g, andLTP is reset to empty. The reconstruction values of these six signi�cant coe�cientsat this stage will be f56;�40; 56; 40;�24; 24g. And T = 16/2 = 8, another roundbegins...The encoding will stop when some target rate is met.For this example, there will be at most six rounds. After the sixth round, theresulting compressed bit stream will be lossless.5.5 Comparisons of Three AlgorithmsThe main di�erence among EZW, SPC and WDR is the way how signi�cant wavelettransform coe�cients are located. Both EZW and SPC are \zerotree" type schemesusing spatial orientation tree structures to implicitly locate signi�cant wavelet trans-form coe�cients, while WDR is a direct approach to �nd the positions of these sig-ni�cant coe�cients based solely on index coding.Except for the way to locate signi�cant wavelet transform coe�cients, and a minordi�erence of the order of sorting passes and re�nement passes, these three algorithmsare essentially using the same idea to encode (and consequently decode) images. Theycan all be included in the following generic model, which consists of �ve steps:1. Take the discrete wavelet transform of the original image.



732. Order the wavelet transform coe�cients from coarser scale to �ner scale, as inFigure 5.2. Set the initial threshold T .3. (Sorting Pass) Find the positions of signi�cant coe�cients with respect to T ,and move these signi�cant coe�cients out.4. (Re�nement Pass) Get the re�nement values of all signi�cant coe�cients, exceptthose just found in the sorting pass of this round.5. Divide T by 2 and go to step 3.The resulting symbol stream in step 3 and 4 will be further encoded by a lossless datacompression algorithm.In the decoding operation, the bit stream will �rst be decoded by the correspond-ing lossless data decompression algorithm to retrieve the symbol stream. Then thedecoded symbol, both during a sorting pass and a re�nement pass, re�nes and reducesthe width of the uncertainty interval in which the true value of the coe�cient mayoccur. The reconstruction value of the coe�cient can be anywhere in that uncertaintyinterval. As suggested by Shapiro, we will simply use the center of the uncertaintyinterval as the reconstruction value. And the last step is to take the inverse wavelettransform to obtain the reconstructed image.The above model provides a method of successive approximation of an image. Ithas several remarkable advantages, as described by Shapiro. First, the bits in the bitstream are generated in order of importance, yielding a fully embedded code. Second,the encoder can terminate the encoding at any point thereby allowing a target rateof target distortion metric to be met exactly. And the performance is achieved witha technique that requires absolutely no training, no pre-stored tables or codebooks,and requires no prior knowledge of the image source.5.6 Applications of WDR AlgorithmThe image compression software ICompressy is based on our algorithm Wavelet-Di�erence-Reduction. ICompress has an input channel, an output channel, and acontrol panel. The input channel supports lots of di�erence image formats, from theyICompress is a registered trademark of the Computational Mathematics Laboratory, RiceUniversity.



74lowest common denominator format pnm, raw, to the popular formats jpeg, gif, ti�,and others. The compression ratio will be set in the control panel. It can be anyreal number greater than or equal to 1. If the ratio is 1, then we will get the originalimage. Also in the control panel, the compression and decompression CPU time willbe shown in the Info area. The decompressed image in ti� format will be sent to theoutput channel. An illustration of ICompress is in Figure 5.4. In Figure 5.4, the input�le is lena.ti�, the 8 bits per pixel (bpp), 512�512 grayscale \Lena" image in ti� for-mat. The compression ratio is set to 40:1. The compression and decompression CPUtimes are 4.0 seconds and 3.5 seconds, respectively. The original \Lena" image andthe decompressed image with ratio 40:1 are shown in Display 1 and 2, respectively.The Wavelet-Di�erence-Reduction algorithm can be applied to various types ofimage data, such as still images, medical images, seismic waves, synthetic apertureradar images, FBI �ngerprints, etc. In this section we will use ICompress to codedi�erent types of images and compare its performance with other well-known imagecoding algorithms.5.6.1 Still ImagesExperiments have been done on all the 8 bits per pixel (bpp), grayscale still images,available from ftp://links.uwaterloo.ca:/pub/BragZone/, which include \Barbara",\Goldhill", \Lena" and others. And we used the biorthogonal Coifman wavelet systemof degree 3 (BCW-3) with six scales. The symmetry of biorthogonal Coifman waveletsystems allows the \re
ection" extension at the images edges. For our purpose, thecompression performance is measured by the peak signal to noise ratioPSNR = 10 log10  2552MSE! dB;where MSE is the mean square error between the original image and the reconstructedone. Some other criterion might have been more preferable. However, to make a directcomparison with other coders, PSNR is chosen. And the bit rate is calculated fromthe actual size of the compressed �le.Our experimental results show that the coding performance of current implemen-tation of this new WDR algorithm is between EZW and SPC, which all are muchbetter than JPEG [54]. Here we include the coding results for the 8 bpp, 512 � 512grayscale \Lena" image. The PSNR versus bit rate is plotted in Figure 5.5. Somereconstructed images are shown in Figure 5.6, 5.7, 5.8, and 5.9. In Figure 5.5, the
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Figure 5.4 Illustration of ICompress



76top curve is Said and Pearlman's SPC algorithm. And our new algorithm is about0.3 dB higher in PSNR than Shapiro's EZW algorithm, 0.6 dB lower in PSNR thanSaid and Pearlman's SPC algorithm. However, this WDR algorithm is much simplerthan both EZW and SPC, hence its encoding and decoding will be faster than bothEZW and SPC.5.6.2 Medical ImagesIn the automatic detection of microcalci�cation clusters in digitized mammograms,we compare the performce on the compressed mammograms using the Wavelet-Di�erence-Reduction algorithm with the performance on the original mammogramimages. The surprising result is the at a compression ratio 10:1, the detection perfor-mance is improved for small false positive rates, compared with the original. Thus,the Wavelet-Di�erence-Reduction algorithm not only provides an e�cient storage forthe mammograms images (which are extremely large in size), but also improves theautomatic detection of microcalci�cation clusters. The reason for the improvementon the compressed data is that at low compression ratios, the compression process issimilar to denoising. Lots of the information discarded in the compressed data is thenoise. Thus at low compression ratios, the mammogram images quality is improvedfor the detection of microcalci�cation clusters. For more details, we refer to our paper[36].5.6.3 Synthetic Aperture Radar ImagesSynthetic aperture radar (SAR) is an active coherent all-weather imaging system thatoperates in the microwave region of the spectrum. This imagery is well suited to thetask of remote ground mapping in many applications, such as surveillance, oceanog-raphy, and agriculture. Real-time transmission of SAR data is of great importance forboth time critical applications such as military search and destroy missions as well asin scienti�c survey applications. Furthermore, since post processing of the collecteddata in either application involves search, classi�cation and tracking of targets, therequirements for a \good" compression algorithm is typically very di�erent from thatof lossy image compression algorithms developed for compressing still-images. Thede�nition of targets are application dependent and could be military vehicles, treesin the rain forest, oil spills etc.
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Figure 5.5 Coding Performance of the New Algorithmon \Lena", Compared with SPC and EZWIf real time transmission of SAR imagery over a T1-carrier (1.544Mb/s) is re-quired, we are faced with having to compress SAR images at a rate of 73:1 (112Mb/s! 1.544Mb/s). While a lot of research on lossy still-image compression has takenplace over the years, not much attention has been paid to lossy compression of sensordata such as SAR. The main focus of compression of sensor data has been towardslossless compression techniques which at most can achieve a compression of about2:1 [42], [33]. By applying standard lossy still-image compression algorithms onecan achieve good results for automatic target recognition (ATR) at a compression of16:1 [44]. By using the Wavelet-Di�erence-Reduction algorithm on the SAR imagedata which are preprocessed by a technique known as the polarimetric whitening �ler(PWF) [37], we found that visually the image quality is still well preserved at theratio 80:1. The experimental results and more details can be found in our paper [47].5.7 Image Processing in the Compressed Wavelet DomainThe Wavelet-Di�erence-Reduction algorithm locates the signi�cant wavelet transformcoe�cients directly and has a clear geometric structure. In the compressed wavelet
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Figure 5.6 Original 8 bpp, 512 � 512, Grayscale \Lena"

Figure 5.7 8:1 Compression, PSNR = 39.84 dB
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Figure 5.8 16:1 Compression, PSNR = 36.59 dB

Figure 5.9 32:1 Compression, PSNR = 33.44 dB



80domain, we know the exact locations of signi�cant coe�cients, along with their pro-ceeding signi�cant bits values. With such a property, we may process the compresseddata directly without applying the decompression �rst.5.7.1 DenoisingIn his celebrated paper [13],D. Donoho showed that the soft thresholding methodis an optimal procedure to recover data from additive Gaussian noise. His methodconsists of three steps. First take the DWT of the noisy data. Then apply the softthresholding on the wavelet coe�cients. The soft thresholding acts like a shrinkageon real numbers, ST t(x) = 8>><>>: x� t if x � t0 if �t < x < tx+ t if x � �t ;where t > 0 is the chosen threshold. The last step is to take the inverse DWT on theresulting numbers.It is clear that the soft thresholding method only involves the magnitudes of thewavelet transform coe�cients. Thus we may denoise the image data in the compressedwavelet domain. In the Wavelet-Di�erence-Reduction algorithm, the magnitudes ofthe wavelet transform coe�cients are compared with a threshold T and the indices ofthose signi�cant coe�cients will be coded by the di�erential coding and the binaryreduction. The magnitudes of those insigni�cant coe�cients will be compared withthe next threshold T=2 in the next cycle. Assume a target rate is met exactly at somepoint, the encoding job is terminated, and the �nal threshold is Tl. If Tl � t, where tis the threshold chosen for denoising, then we may simply subtract the magnitudes ofsigni�cant coe�cients by t, and the denoising is done. If Tl < t, since in the Wavelet-Di�erence-Reduction algorithm, the consecutive thresholds in the consecutive cyclesare di�erent by a factor of 2, there muse exist some cycle with the threshold Tc, suchthat Tc < t � 2Tc. To carry out the soft thresholding method in the compresseddomain, we just set all magnitudes of those coe�cients which are found signi�cantat this cycle (with the threshold Tc) or after this cycle to zero, and subtract by t allmagnitudes of those coe�cients which are found signi�cant before this cycle.



815.7.2 Speckle ReductionH. Guo et al. [20] found out that both the soft thresholding and the hard thresholdmethods are computational e�cient and can signi�cantly reduce the speckle whilepreserving the resolution of the synthetic aperture radar (SAR) images. The hardthresholding behaves like an ideal stop band,HT t(x) = 8<: x if x � t or x � �t0 if �t < x < t ;where t > 0 is the chosen threshold. The hard thresholding method doesn't requirea subtraction operation. Thus it is more easier to be implemented in the compressedwavelet domain. Using the same argument as for the denoising, we may reduce thespeckle on the compressed SAR data directly.5.7.3 ZoomingWhen the image data size is very large, such as the medical images, seismic waves,image processing will be remarkable slow. Very oftenly we are interested in onlya small region of the whole image. Thus it is desirable that we can zoom in theinteresting region as quick as possible. Here we propose a novel method to zoomimage data in the compressed domain. Assume the image data is stored in a com-pressed form by the Wavelet-Di�erence-Reduction algorithm. Since it is an embeddedcoding algorithm, at the beginning of the bit stream, the embedded code containsall lower rate (here the rate is the bit rate, or the number of bits per pixel) codes.Decompressing these beginning bit stream will give us a reconstruction image at avery low resolution with a relatively small data size. Then it becomes much easierto pick up our interested region in this decompressed image, which has a small datasize. After that, as the decoding continues, more and more �ne detail in the order ofimportance will be sent out to produce reconstruction images with higher and higherresolutions. Since we already know the location of our interested region, we alsoknow the locations of signi�cant wavelet transform coe�cients, by the nature of theWavelet-Di�erence-Reduction algorithm, we can simply ignore those bit stream notrelated to our interested region and get the reconstruction image of the interestedregion in a fast fashion.



825.8 Image Coding Evaluation of BCWsIn Chapter 3 we have learned biorthogonal Coifman wavelet systems, their construc-tion and properties. Now it is the time to evaluate their transform coding perfor-mance. We will show that biorthogonal Coifman wavelet systems are very suitedto image transform coding. Here for simplicity, we choose biorthogonal Coifmanwavelet system of degree 3 (BCW-3) and compare it with the most widely usedCohen-Daubechies-Feauveau 9/7-tap �lters (CDF-97) [7]. Some image-independentmeasures as well as some image-dependent measures will be applied to systematicallycompare these wavelet systems for image transform coding.5.8.1 Image-Independent MeasuresIn [53], several image-independent measures based on some properties of the dual�lters have been recommended to evaluate wavelet �lters for image transform coding.We list the comparison results using these measures in the Table 5.1.RegularityIt has been well known that the regularity of wavelets is only partially related to thequality of the reconstructed image via wavelet transform coding [51, 53, 41]. However,for short wavelet �lters, the regularity is still closely related to the compression per-formance [41]. We use the algorithm by Rioul [40] to estimate the H�older regularityof the wavelet �lters. Usually, the smoothness of the synthesis scaling function ~�(x)is more important than that of the analysis scaling function �(x) in determining thequality of a reconstructed image, and the latter is more relevant to the energy com-paction capability than the former for those smooth images. Therefore, there is atradeo� between these two factors when choosing short wavelet �lters. The compari-son results in the Table 5.1 indicate that the BCW-3 and CDF-97 are about the samein terms of the distribution of regularity.Shift-Variant Impulse ResponseThe impulse response of an L-level combined subband analysis/synthesis system isde�ned as [53] f(h; ~h;L;n; n0) = Rh;~h;LfWL(n)Dh;~h;Lf�(n� n0)gg; (5:3)



83Table 5.1 Comparison Using Image-Independent MeasuresRegularity MPSR APSR MFOSS AFOSShN; ~N ~hNCDF-97 1.00 1.70 11.22 13.93 0.0411 0.0271BCW-3 0.85 2.00 10.67 15.05 0.0379 0.0263where h and ~h are the dual lowpass �lters, �(n � n0) is an impulse at n = n0, Dand R are the decomposition and the reconstruction operators, respectively, and thewavelet domain window function WL(n) is de�ned asWL(n) = 8<: 1; if n 2 N;0; otherwise, (5:4)where N is the set of indices for the subband signal with the lowest resolution. Sincethe biorthogonal DWT is shift-variant, the impulse response de�ned above also de-pends on the location of the impulse. Unlike [53], we here use both the minimum andthe average peak-to-sidelobe ratio (MPSR and APSR) in dB among the 2L possibleimpulse responses in an L-level decomposition/reconstruction to characterize boththe worst-case and the average oscillatory behavior, or ringing e�ect, in the systemresponse, which usually results in visually annoying artifacts in the reconstructedimage. The higher MPSR and APSR correspond to the weaker ringing behavior.From the Table 5.1 we can see that the APSR of the BCW-3 is better than CDF-97, while the MPSR of the latter is better than the former.Shift-Variant Step ResponseSince the ringing artifact often occurs near the regions of edges in the reconstructedimage, it can also be characterized by both the maximum and the average fractionalovershoot of the second sidelobe (MFOSS and AFOSS) among the 2L possible stepresponses of the combined analysis/synthesis system, which are closely related to theworst-case and the average ringing e�ect, respectively. A strong overshoot in the stepresponse will lead to signi�cant ringing in the reconstructed image [53].The comparison results in the Table 5.1 indicate that the BCW-3 has lower AFOSSthan the CDF-97, and the BCW-3 is also better than CDF-97 in terms of the MFOSS.



84From the above comparison of the impulse responses and the step responses forthe four FBs, we can expect that the BCW-3 will exhibit weaker ringing artifact thanthe CDF-97.5.8.2 Image-Dependent MeasuresThe energy compaction is one of the most important metrics in the evaluation of�lters used in transform coding schemes. However, to our knowledge, there is nomeasure for energy compaction that can be used independent of images. We choosesix test images: Lena (512�512), Peppers (512�512), Boats (576�720), Building (asynthetic aperture radar image, 800�800), Fingerprint-1 (768�768) and Fingerprint-2 (480 � 384), which are all 256-gray-level images.Weighted Subband Coding GainFor a given image x with size N and a subband decomposition scheme, the energycompaction property of a FB can be characterized by the weighted SBC gain [25]GSBC = Cx�2x K�1Yk=0 �� NNk�wk�2xk��Nk=N ; (5:5)where Cx is a constant related to the image x, K is the number of subbands, Nkis the size of the kth subband image, �2x and �2xk are the variances of the image xand the subband image xk, respectively, and wk is the weight for the kth subband,which takes into consideration the di�erent energy contribution from di�erent sub-bands due to the relaxation of the orthogonality. We apply the method in [58] tocompute these �lter-related weights fwkg, and here we also propose a new formulathat generalizes the simple cases in [58]. Assume that the channel of the synthesisFB for the kth subband image consists of M �lters in the horizontal direction, inthe order of gh;1; gh;2; � � � ; gh;M , and M �lters in the vertical direction, in the order ofgv;1; gv;2; � � � ; gv;M (Here we consider only the two-dimensional separable FBs). Theweight wk is given by wk = 2�2M  Xn jgh(n)j2! Xn jgv(n)j2! ; (5:6)where Gh(z) =Xn gh(n)z�n = MYi=1Gh;i �z2M�i� ; (5:7)



85Gv(z) =Xn gv(n)z�n = MYi=1Gv;i �z2M�i� : (5:8)From (5.5) one can see that the SBC gain depends strongly on the image content.It is also partly theoretical, because the de�nition of the SBC gain includes someassumptions that are not always valid in practice. However, due to the lack of bettermetrics to measure the energy compaction capability, the SBC gain is still widelyused.The experimental results are given in Table 5.2. We �nd that the SBC gains ofthe BCW-3 are slightly better than those of the CDF-97 for the �rst four images,while for the two �ngerprint images the SBC gains of the BCW-3 are much better.Table 5.2 Comparison Using the Weighted SBC GainLena Peppers Boats Building Fingerprint-1 Fingerprint-2CDF-97 49.29 32.12 37.96 28.36 77.40 46.60BCW-3 50.34 32.79 40.94 28.74 88.72 53.895.9 ConclusionsIn this chapter we have presented the Wavelet-Di�erence-Reduction algorithm. Itutilizes the discrete wavelet transform which removes the spatial and spectral redun-dancies of digital images to a large extend. The combination of the di�erential codingand the binary reduction represents the positions of signi�cant wavelet transform co-e�cients very e�ciently. This Wavelet-Di�erence-Reduction algorithm provides asuccessive approximation of image sources and facilitates progressive image transmis-sion. It requires no training of any kind or prior knowledge of image sources. Sincethis algorithm doesn't depend on any special statistical model, it can be easily ex-tended to 3-D or even higher image data compression. Also due to its clear geometricstructure we may perform image processing directly in the compressed wavelet do-main. Considering the large data size nowadays, this may enable us to reach ourgoal in a fast and e�cient way. And with its nice compression performance, fast en-coding/decoding speed, this new algorithm looks quite promising in image and vedioprocessing.



86Chapter 6SummaryBiorthogonal Coifman wavelet systems have very nice properties both in the theoreti-cal sense and the application sense. The vanishing moments conditions have played animportant role in such systems. These conditions not only give growing smoothnessof wavelet systems, but also provide fast wavelet sampling approximation. Anotherattractive feature of biorthogonal Coifman wavelet systems is that all the coe�cientsare dyadic rational. Thus we can have a very fast multiplication-free discrete wavelettransform implemented on digital computers.
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